Skip to main content
Log in

First-principle calculations of the structural, electronic, thermodynamic and thermal properties of ZnS x Se1−x ternary alloys

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ZnS x Se1−x ternary alloys using the full potential-linearized augmented plane wave method (FP-LAPW) within the density functional theory (DFT). In this approach the Wu–Cohen generalized gradient approximation (WC-GGA) and Perdew–Wang local density approximation (LDA) were used for the exchange–correlation potential. For band structure calculations, in addition to WC-GGA approximation, both Engel–Vosko (EV-GGA) generalized gradient approximation and recently proposed modified Becke–Johnson (mBJ) potential approximation have been used. Our investigation on the effect of composition on lattice constant, bulk modulus and band gap for ternary alloys shows a linear dependence on alloy composition with a small deviation. The microscopic origins of the gap bowing were explained using the approach of Zunger and co-workers. Besides, a regular-solution model was used to investigate the thermodynamic stability of the alloys which mainly indicates a phase miscibility gap. Finally, the quasi-harmonic Debye model was applied to see how the thermal properties vary with temperature at different pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Boutaiba F et al 2009 Superlattices Microstruct. 46 823

  2. Prevenslik T V 2000 J. Lumin. 87 1210

  3. Yamamoto T et al 2001 Physica B 308 916

  4. Zhu Y and Bando Y 2003 Chem. Phys. Lett. 377 367

  5. Mirov S B 2002 Opt. Lett. 27 909

  6. Janetzko F and Jug K 2004 J. Phys. Chem. A 108 5449

  7. Xu H et al 2008 Adv. Mater. 20 3294

  8. Wang M et al 2007 Adv. Mater. 19 4491

  9. El-Shazly A A et al 1985 Appl. Phys. A 36 51

  10. Kumar V and Sharma T P 1998 Opt. Mater. 10 253

  11. Kim J S et al 1996 Solid State Commun. 100 817

  12. Wu B J et al 1996 Appl. Phys. Lett. 68 379

  13. Han J et al 1997 Eds II–VI blue/green light emitters: device physics and epitaxial growth, semiconductor and semimetals 44 17

  14. Godlewski M et al 2003 J. Lumin. 102 455

  15. Shen D et al 2003 J. Mater. Sci. Lett. 22 483

  16. Okuyama H et al 1998 Phys. Rev. B 57 2257

  17. Borna H et al 1998 J. Cryst. Growth 184/185 1132

  18. Song J H et al 2000 J. Cryst. Growth 214/215 460

  19. Sunghoon Park et al 2012 Curr. Appl. Phys. 12 499

  20. Tang T P et al 2009 J. Alloys Compd. 488 250

  21. Bernard J E and Zunger A 1987 Phys. Rev. B 36 3199

  22. Gabrel’yan B V et al 2000 J. Struct. Chem. 41 403

  23. Kassali K and Bouarissa N 2002 Mater. Chem. Phys. 76 255

  24. Benkabou F et al 2003 Physica B 337 147

  25. Mesri D et al 2007 Comput. Mater. Sci. 39 453

  26. Hakan Gürel H et al 2013 Mater. Sci. Semicond. Process. 16 1619

  27. Blanco M A et al 2004 Comput. Phys. Commun. 158 57

  28. Andersen O K 1975 Phys. Rev. B 42 3063

  29. Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864

  30. Kohn W and Sham L J 1965 Phys. Rev. 140 1133

  31. Blaha P et al 2008 WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna, Austria)

  32. Perdew J P et al 1996 Phys. Rev. Lett. 77 3865

  33. Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116

  34. Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244

  35. Engel E and Vosko S H 1993 Phys. Rev. B 47 13164

  36. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

  37. Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101

  38. Agrawal B K et al 1997 J. Phys.: Condens. Matter 9 1763

  39. Mohammad R and Katırcıoğlu S 2009 J. Alloys Compd. 469 504

  40. De Almeida J S and Ahuja R 2006 Appl. Phys. Lett. 89 061913

  41. Miloua R et al 2008 Phys. Lett. A 372 1910

  42. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 5390

  43. Vegard L 1921 Z. Phys. 5 17

  44. Scharmann A et al 1979 J. Lumin. 18–19 833

  45. Ozawa L and Nagashima Y 1964 J. Electrochem. Soc. Jpn. 32 26

  46. Homann T et al 2006 Solid State Sci. 8 44

  47. Bernard J E and Zunger A 1986 Phys. Rev. Lett. 34 5992

  48. Swalin R A 1961 Thermodynamics of solids (New York: Wiley)

  49. Ferreira L G et al 1999 Phys. Rev. B 40 3197

  50. Blanco M A et al 1996 J. Mol. Struct. Theochem. 368 245

  51. Flórez M et al 2002 Phys. Rev. B 66 144112

  52. Debye P 1912 Ann. Phys. 39 789

  53. Madelung O 1982 Landolt Bornstein: numerical data and functional relationships in science and technology vol. 17b

  54. Lee S G and Chang K J 1995 Phys. Rev. B 52 1918

  55. Hakan Gürel H et al 2012 Superlattices Microstruct. 51 725

  56. Hacini K et al 2011 Comput. Mater. Sci. 50 3080

  57. Khenata R et al 2006 Comput. Mater. Sci. 38 29

  58. Fleszar A and Hanke W 2005 Phys. Rev. B 71 045207

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H MERADJI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BENDAIF, S., BOUMAZA, A., NEMIRI, O. et al. First-principle calculations of the structural, electronic, thermodynamic and thermal properties of ZnS x Se1−x ternary alloys. Bull Mater Sci 38, 365–372 (2015). https://doi.org/10.1007/s12034-015-0877-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0877-0

Keywords

Navigation