Skip to main content
Log in

Synthesis, structural and optical properties of nanoparticles (Al, V) co-doped zinc oxide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The synthesis by the sol–gel method, structural and optical properties of ZnO, Zn0.99Al0.01O (AlZ), Zn0.9V0.1O (VZ) and Zn0.89Al0.01V0.1O (AlVZ) nanoparticles was reported. The approach was slow release of water for hydrolysis by esterification reaction followed by a supercritical drying in ethyl alcohol. After thermal treatment at 500C in air, the obtained nanopowders were characterized by various techniques such as transmission electron microscopy, X-ray diffraction and photoluminescence (PL) spectroscopy. The structural properties showed that the ZnO nanoparticles with an average particle size of 25 nm exhibit hexagonal wurtzite structure. From the optical studies, it was found that the optical band gap was located between 2.97 and 3.17 eV. The obtained electrical properties showed the potential application of the samples in optoelectronic devices. The powder of AlVZ presented a strong luminescence band in the visible range. The PL band energy position presented a small blue shift with the increase of measurement temperature. Different possible attributions of this emission band will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kim Y M, Yoon M, Park I W, Park Y J and Lyou J H 2004 J. Solid State Commun. 129 175

    Article  Google Scholar 

  2. El Mir L, El Ghoul J, Alaya S, Ben Salem M, Barthou C and von Bardeleben H J 2008 J. Phys. B: Condens. Matter 403 1770

    Article  Google Scholar 

  3. El Mir L, Ben Ayadi Z, Saadoun M, Djessas K, von Bardeleben H J and Alaya S 2007 J. Appl. Surf. Sci. 254 570

    Article  Google Scholar 

  4. El Ghoul J, Barthou C and El Mir L 2012 Physica E 44 1910

    Article  Google Scholar 

  5. El Ghoul J, Barthou C and El Mir L 2012 J. Superlattices Microstruct. 51 942

    Article  Google Scholar 

  6. El Ghoul J, Barthou C, Saadoun M and El Mir L 2010 J. Phys. B 405 597

    Article  Google Scholar 

  7. Karmakar D, Mandal S K, Kadam R M, Paulose P L, Rajarajan A K, Nath T K, Das A K, Dasgupta I and Das G P 2007 J. Phys. Rev. B 75 144404

    Article  Google Scholar 

  8. Khorsand Zak A, Abd. Majid W H, Abrishami M E, Yousefi R and Parvizi R 2012 J. Solid State Sci. 14 488

    Article  Google Scholar 

  9. Nunes P, Fortunadeo E and Martins R 2001 Thin Solid Films 383 277

    Article  Google Scholar 

  10. Jin B J, Im S and Lee S Y 2000 Thin Solid Films 366 107

    Article  Google Scholar 

  11. Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E 1996 J. Appl. Phys. 79 7983

    Article  Google Scholar 

  12. Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y, Saykally R J and Yang P 2003 Angew. Chem. Int. Ed. 42 3031

    Article  Google Scholar 

  13. Heo Y W, Norton D P and Pearton S J 2005 J. Appl. Phys. 98 1

    Article  Google Scholar 

  14. Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287

    Article  Google Scholar 

  15. Liu X, Wu X, Cao H and Chang R P H 2004 J. Appl. Phys. 95 3141

    Article  Google Scholar 

  16. Wang M, Kim E J, Chung J S, Shin E W, Hahn S H, Lee K E and Park C 2006 Phys. Status Solidi A 203 2418

    Article  Google Scholar 

  17. Li L J, Deng H, Dai L P, Chen J J, Yuan Q L and Li Y 2008 Mater. Res. Bull. 43 1456

    Article  Google Scholar 

  18. Fujihara S, Ogawa Y and Kasai A 2004 Chem. Mater. 16 2965

    Article  Google Scholar 

  19. Lee J Y, Jang B R, Lee J H, Kim H S, Cho H K, Moon J Y, Lee W J and Baek J W 2009 Thin Solid Films 517 4086

    Article  Google Scholar 

  20. Gong Y, Andelman T, Neumark G F, O’Brien S and Kuskovsky I L 2007 Nanoscale Res. Lett. 2 297

    Article  Google Scholar 

  21. Ohashi N, Ebisawa N, Sekiguchi T, Sakaguchi I, Wada Y, Takenaka T and Haneda H 2005 Appl. Phys. Lett. 86 1

    Article  Google Scholar 

  22. Nayak J, Kimura S, Nozaki S, Ono H and Uchida K 2007 Superlattices Microstruct. 42 438

    Article  Google Scholar 

  23. El Mir L, Ben Ayadi Z, Saadoun M, von Bardeleben H J, Djessas K and Zeinert A 2007 Phys. Status Solidi (a) 204 3266

    Article  Google Scholar 

  24. El Mir L, Ghribi F, Ben Ayadi Z, Djessas K, Cubukcu M and von Bardeleben H J 2011 Thin Solid Films 519 5787

    Article  Google Scholar 

  25. Wang L, Meng L, Teixeira V, Song S, Xu Z and Xu X 2009 Thin Solid Films 517 3721

    Article  Google Scholar 

  26. El Ghoul J, Bouguila N, Gómez-Lopera S A and El Mir L 2013 Superlattices Microstruct. 64 451

    Article  Google Scholar 

  27. Cogan S F, Nguyen N M, Perrotti S J and Rauh R D 1989 J. Appl. Phys. 66 1333

    Article  Google Scholar 

  28. Zhong Z Y and Zhang T 2013 Mater. Lett. 96 237

    Article  Google Scholar 

  29. Kong Y C, Yu D P, Zhang B et al 2001, Appl. Phys. Lett. 78 407

    Article  Google Scholar 

  30. El Ghoul J, Barthou C, Saadoun M and El Mir L 2010 Physica B 405 597

    Article  Google Scholar 

  31. Jin B J, Im S and Lee S Y 2000 Thin Solid Films 366 107

    Article  Google Scholar 

  32. Jeong S H, Kim B S and Lee B T 2003 Appl. Phys. Lett. 82 2625

    Article  Google Scholar 

  33. Fu Z X, Guo C X, Lin B X and Liao G H 1998 Chim. Phys. Lett. 15 457

    Article  Google Scholar 

  34. Teke A, Ozgur U, Dogan S, Gu X, Morkoç H, Nemeth B, Mause J and Everitt H O 2004 Phys. Rev. B 70 195207

    Article  Google Scholar 

  35. Wang M, Lee K E, Hahn S H, Kim E J, Kim S, Chung J S, Shin E W and Park C 2007 Mater. Lett. 61 1118

    Article  Google Scholar 

  36. Leroux M, Grandjean N, Beaumont B, Nataf G, Semond F, Massies J and Gibart P 1999 J. Appl. Phys. 86 3721

    Article  Google Scholar 

  37. Wang Y, Hao Y and Yuwen L 2006 J. Alloys Compd. 425 339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J EL GHOUL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL GHOUL, J. Synthesis, structural and optical properties of nanoparticles (Al, V) co-doped zinc oxide. Bull Mater Sci 39, 7–12 (2016). https://doi.org/10.1007/s12034-015-1139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1139-x

Keywords

Navigation