Skip to main content

Advertisement

Log in

Adsorption property of volatile molecules on ZnO nanowires: computational and experimental approach

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

ZnO nanowires (NWs) were deposited on a glass substrate by the successive ionic layer adsorption and reaction method (SILAR). Sensing response of ZnO NWs towards reducing vapours was tested at ambient temperature \(({\sim }32{^{\circ }}\hbox {C})\) by the chemiresistor method. The vapour response was found to be 80.2, 1.6, 1.1 and 1.1 for \(\hbox {NH}_{3}, \hbox {H}_{2}\hbox {O}, (\hbox {CH}_{3})_{2}\hbox {CO}\) and \(\hbox {C}_{2}\hbox {H}_{5}\hbox {OH}\), respectively. Also, density functional theory (DFT) calculations were performed to understand the charge transfer and electronic property change during adsorption of molecules over ZnO NW. The band of the Zn 3d state was altered after adsorption and no significant changes were observed in the O 2p state. Higher binding energy (14.6 eV) with significant charge transfer (\(0.04{\vert }e{\vert }\)) was observed in the ammonia-adsorbed ZnO NW. On comparing response obtained through experimental and computational studies, almost a similar trend of response was observed except for the \(\hbox {H}_{2}\hbox {O}\)\(\hbox {ZnO}\) system. This was due to lack of dispersion interaction and steric effect influence in the DFT calculation with the chosen computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lexi Z, Jianghong Z, Haiqiang L, Liming G, Li L, Jianfeng Z et al 2011 Sens. Actuators B 160 364

    Article  Google Scholar 

  2. Mohini D, Jitendra B, Ashok S, Vimal V and Golla E 2014 IEEE Sens. J. 14 1577

    Article  Google Scholar 

  3. Samarasekara P, Yapa N U S, Kumara N T R N and Perera M V K 2007 Bull. Mater. Sci. 30 113

    Article  Google Scholar 

  4. Shudi P, Gaolin W, Wei S and Qian W 2013 J. Nanomater. 2013 1

  5. Rajesh K, Al-Dossary O, Girish K and Ahmad U 2015 Nano-Micro Lett. 7 97

    Article  Google Scholar 

  6. Kalyamwar V S, Raghuwanshi F C, Narayan L J and Anil J G 2013 J. Sens. Technol. 3 31

    Article  Google Scholar 

  7. Akash K, Sun-Woo C, Hyoun W K and Sang S K 2015 J. Hazard. Mater. 286 229

    Article  Google Scholar 

  8. Wagh M S, Jain G H, Patil D R, Patil S A and Patil L A 2006 Sens. Actuators B 115 128

    Article  Google Scholar 

  9. Bhooloka Rao B 2000 Mater. Chem. Phys. 64 62

    Article  Google Scholar 

  10. Hsueh H T, Hsueh T J, Chang S J, Hung F Y, Hsu C L, Dai B T et al 2012 IEEE Trans. Nanotechnol. 11 520

    Article  Google Scholar 

  11. Martins J B L, Longo E, Salmon O D R, Espinoza V A A and Taft C A 2004 Chem. Phys. Lett. 400 481

    Article  Google Scholar 

  12. Prades J D, Cirera A and Morante J R 2009 Sens. Actuators B 142 179

    Article  Google Scholar 

  13. Meyer B and Marx D 2003 J. Phys.: Condens. Matter 15 89

    Google Scholar 

  14. Noei H, Gallino F, Jin L, Zhao J, Valentin C D and Wang Y 2013 Angew. Chem. Int. Ed. 52 1977

    Article  Google Scholar 

  15. Morimoto T, Yanal H and Nagao M 1976 J. Phys. Chem. 80 471

    Article  Google Scholar 

  16. Ozawa K, Hasegawa T, Edamoto K, Takahashi K and Kamada M 2002 J. Phys. Chem. B 106 9380

    Article  Google Scholar 

  17. Yuan Q, Zhao Y P, Li L and Wang T 2009 J. Phys. Chem. C 113 6107

    Article  Google Scholar 

  18. Virtual Nanolab version 2016.0 QuantumWise A/S (www.quantumwise.com)

  19. Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401

    Article  Google Scholar 

  20. Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P et al 2002 J. Phys.: Condens. Matter 14 2745

    Google Scholar 

  21. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  Google Scholar 

  22. Mulliken R S 1955 J. Chem. Phys. 23 1833

    Article  Google Scholar 

  23. Amalraj A S and Senguttuvan G 2014 J. Mater. Sci.: Mater. Electron. 25 2035

    Google Scholar 

  24. Pandeeswari R and Jeyaprakash B G 2014 Sens. Actuators B 195 206

    Article  Google Scholar 

  25. Mohammadi A S, Mahdy Baizaee S and Salehi H 2011 World Appl. Sci. J. 14 1530

    Google Scholar 

  26. Charifi Z, Baaziz H and Reshak A H 2007 Phys. Stat. Sol. (b) 244 3154

  27. Agapito L A, Curtarolo S and Nardelli M B 2015 Phys. Rev. X 5 011006

  28. Arockia J K, Jonnala R R, Parthasarathy S, Babu K J, Ganesh K M, Prabakaran S et al 2016 J. Alloys Compd. 688A 422

    Google Scholar 

Download references

Acknowledgements

This study was funded by Defence Research and Development Organisation (DRDO), India, under ER & IPR Project (ERIPR/ER/1003908/M/01/1541). We thank Dr Arkaprava Bhattacharyya, SASTRA University, for providing ATK QuantumWise software to carry out the DFT studies. We also thank SASTRA University for providing the infrastructural facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B G Jeyaprakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anasthasiya, A.N.A., Ramya, S., Balamurugan, D. et al. Adsorption property of volatile molecules on ZnO nanowires: computational and experimental approach. Bull Mater Sci 41, 4 (2018). https://doi.org/10.1007/s12034-017-1538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-017-1538-2

Keywords

Navigation