Skip to main content

Advertisement

Log in

Facile synthesis and characterization of \(\hbox {CsPbBr}_{3}\) and \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

All-inorganic caesium lead-halide perovskite \(\hbox {CsPbBr}_{3}\) and \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders have emerged as attractive optoelectronic materials owing to their stabilities and highly efficient photoluminescence (PL). Herein we report a facile chemical route to prepare highly luminescent monoclinic \(\hbox {CsPbBr}_{3}\) and tetragonal \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders at room temperature. The \(\hbox {CsPbBr}_{3}\) powders exhibit regular crystal shape and demonstrate polyhedral geometry with an average particle size of 10 \(\upmu \)m. The \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders show platelet morphologies and the lateral sizes of the particles are from 5 up to 200 \(\upmu \)m. Both \(\hbox {CsPbBr}_{3}\) and \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders present a narrow emission line-width and PL emission of 528 and 527 nm, respectively. A direct band gap of 2.35 eV and an indirect band gap of 3.01 eV are calculated for \(\hbox {CsPbBr}_{3}\) and \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders, respectively. In addition, the monoclinic \(\hbox {CsPbBr}_{3}\) can be transformed to tetragonal \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) in the presence of water. The large-scale synthesis of \(\hbox {CsPbBr}_{3}\) and \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) will be advantageous in future applications of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967

    Article  Google Scholar 

  2. Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764

    Article  Google Scholar 

  3. Liu M, Johnston M B and Snaith H J 2013 Nature 501 395

    Article  Google Scholar 

  4. Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J et al 2015 Science 348 1234

    Article  Google Scholar 

  5. Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F et al 2014 Nat. Nanotechnol. 9 687

  6. Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L et al 2015 Adv. Mater. 27 1248

    Article  Google Scholar 

  7. Zhang Q, Ha S T, Liu X, Sum T C and Xiong Q 2014 Nano Lett. 14 5995

    Article  Google Scholar 

  8. Sutherland B R, Hoogland S, Adachi M M, Wong C T and Sargent E H 2014 ACS Nano 8 10947

    Article  Google Scholar 

  9. Hu X, Zhang X, Liang L, Bao J, Li S, Yang W et al 2014 Adv. Funct. Mater. 24 7373

    Article  Google Scholar 

  10. Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G et al 2014 Nat. Commun. 5 5404

    Article  Google Scholar 

  11. Zhu Z, Hadjiev V G, Rong Y, Guo R, Cao B, Tang Z et al 2016 Chem. Mater. 28 7385

    Article  Google Scholar 

  12. Gu Z, Wang K, Sun W, Li J, Liu S, Song Q et al 2016 Adv. Opt. Mater. 4 472

    Article  Google Scholar 

  13. Song J, Xu L, Li J, Xue J, Dong Y, Li X et al 2016 Adv. Opt. Mater. 28 4861

    Article  Google Scholar 

  14. Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J et al 2016 Adv. Funct. Mater. 26 2435

    Article  Google Scholar 

  15. Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A and Nag A 2015 J Angew. Chem. Int. Ed. 54 15424

    Article  Google Scholar 

  16. Kulbak M, Cahen D and Hodes G 2015 J. Phys. Chem. Lett. 6 2452

    Article  Google Scholar 

  17. Pan J, Sarmah S P, Murali B, Dursun I, Peng W, Parida M R et al 2015 J. Phys. Chem. Lett. 6 5027

    Article  Google Scholar 

  18. Song J, Li J, Li X, Xu L, Dong Y and Zeng H 2015 Adv. Mater. 27 7162

    Article  Google Scholar 

  19. Zhang X, Xu B, Zhang J, Gao Y, Zheng Y, Wang K et al 2016 Adv. Funct. Mater. 26 4595

    Article  Google Scholar 

  20. Tang X, Hu Z, Yuan W, Hu W, Shao H, Han D et al 2017 Adv. Opt. Mater. 5 1600788

    Article  Google Scholar 

  21. Akkerman Q A, Motti S G, Kandada A R S, Mosconi E, D’Innocenzo V, Bertoni G et al 2016 J. Am. Chem. Soc. 138 1010

    Article  Google Scholar 

  22. Bekenstein Y, Koscher B A, Eaton S W, Yang P and Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008

    Article  Google Scholar 

  23. Rodová M, Brožek J, Knížek K and Nitsch K 2003 J. Therm. Anal. Calorim. 71 667

    Article  Google Scholar 

  24. Møller C K 1958 Nature 182 1436

    Article  Google Scholar 

  25. Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H et al 2015 Nano Lett. 15 3692

    Article  Google Scholar 

  26. Shamsi J, Dang Z, Bianchini P, Canale C, Stasio F D, Brescia R et al 2016 J. Am. Chem. Soc. 138 7240

    Article  Google Scholar 

  27. Ma R, Liu Z, Takada K, Iyi N, Bando Y and Sasaki T 2007 J. Am. Chem. Soc. 129 5257

    Article  Google Scholar 

  28. Niu G D, Guo X D and Wang L D 2015 J. Mater. Chem. A 3 8970

    Article  Google Scholar 

  29. Tang X, Hu Z, Chen W, Xing X, Zang Z, Hu W et al 2016 Nano Energy 28 462

    Article  Google Scholar 

  30. Li G, Wang H, Zhu Z, Chang Y, Zhang T, Song Z et al 2016 Chem. Commun. 52 11296

    Article  Google Scholar 

  31. Ruan L, Shen W, Wang A, Xiang A and Deng Z 2017 J. Phys. Chem. Lett. 8 3853

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation under Grant Number 2015M582584, the Postdoctoral Research Project of Shaanxi Province under Grant Number 2016BSHEDZZ06, the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University, under Grant Number 310831171011 and the Special Fund for Basic Research Support Programs of Chang’an University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Zhang, J. & Bai, G. Facile synthesis and characterization of \(\hbox {CsPbBr}_{3}\) and \(\hbox {CsPb}_{2}\hbox {Br}_{5}\) powders. Bull Mater Sci 41, 38 (2018). https://doi.org/10.1007/s12034-018-1566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1566-6

Keywords

Navigation