Skip to main content
Log in

Synthesis and characterization of hydroxyapatite/alumina ceramic nanocomposites for biomedical applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, nanocrystalline hydroxyapatite/alumina \((\hbox {HAp}{-}\hbox {Al}_{2}\hbox {O}_{3})\) composite was prepared under specially designed stir-type hydrothermal reactor. The composite was prepared at two different temperatures under autogenous pressure and analysed for crystallinity, size, shape, composition and thermomechanical stability. The electron microscopy study shows the formation of \(\hbox {HAp}{-}\hbox {Al}_{2}\hbox {O}_{3}\) composite nanorods with uniform distribution. The thermogravimetry analysis reveals better thermomechanical property with minimal weight loss at increased temperature. The effect of different concentrations of \(\hbox {HAp}{-}\hbox {Al}_{2}\hbox {O}_{3}\) composite powders against MG63 human osteosarcoma cell lines shows excellent compatibility (80%) at high concentration of \(200~\upmu \hbox {g ml}^{-1}\). These studies facilitate the formation of biocompatible \(\hbox {HAp}{-}\hbox {Al}_{2}\hbox {O}_{3}\) composite nanorods for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Supova M 2015 Ceram. Int. 41 9203

    Article  Google Scholar 

  2. Mezahi F Z, Oudadesse H, Harabi A and Gal Y 2012 Int. J. Appl. Ceram. Technol. 9 529

    Article  Google Scholar 

  3. Oktar F N, Agathopoulos S, Ozyegin L S, Gunduz O, Demirkol N, Bozkurt Y et al 2007 J. Mater. Sci.: Mater. Med. 18 2137

    Google Scholar 

  4. Evis Z and Doremus R H 2005 Mater. Lett. 59 3824

    Article  Google Scholar 

  5. Jun Y K, Kim W H, Kweon O K and Hong S H 2003 Biomaterials 24 3731

    Article  Google Scholar 

  6. Sanayei M, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R and Shokuhfar A 2010 J. Nano Res. 11 145

    Article  Google Scholar 

  7. Juang H Y and Hon M H 1994 J. Mater. Sci. Eng. C 2 77

    Article  Google Scholar 

  8. Gautier S, Champion E and Bernache-Assollant D 1999 J. Mater. Sci.: Mater. Med. 10 533

    Google Scholar 

  9. Yelten A, Yilmaz S and Oktar F N 2012 Ceram. Int. 3 2659

    Article  Google Scholar 

  10. Ramesh S, Natasha A N, Tan C Y, Bang L T, Niakan A, Purbolaksono J et al 2015 Ceram. Int. 41 10434

    Article  Google Scholar 

  11. Kim S, Kong Y M, Lee I S and Kim H E 2002 J. Mater. Sci.: Mater. Med. 13 307

    Google Scholar 

  12. Hannora A E 2014 J. Ceram. Sci. Technol. 5 293

    Google Scholar 

  13. Chiba A, Kimura S, Raghukandan K and Morizono Y 2003 J. Mater. Sci. Eng. A 350 179

    Article  Google Scholar 

  14. Sopyan I, Fadli A and Mel M 2012 J. Mech. Behav. Biomed. Mater. 8 86

    Article  Google Scholar 

  15. Radha G, Balakumar S, Venkatesan B and Vellaichamy E 2015 J. Mater. Sci. Eng. C 50 143

    Article  Google Scholar 

  16. Costa D, Dixon S J and Rizkalla A S 2012 ACS Appl. Mater. Interf. 4 1490

    Article  Google Scholar 

  17. Labat B, Chamson A and Frey J 1995 J. Biomed. Mater. Res. 29 1397

  18. Rajkumar M, Meenakshi Sundaram N and Rajendran V 2011 Dig. J. Nanomater. Biostruct. 6 169

    Google Scholar 

  19. Mujahid M, Sarfraz S and Amin S 2015 Mater. Res. 18 468

    Article  Google Scholar 

  20. Zhang Y and Lu J 2008 Cryst. Growth Des. 8 2101

    Article  Google Scholar 

  21. Nath S, Biswas K, Wang K, Bordia R K and Basu B 2010 J. Am. Ceram. Soc. 93 1639

    Google Scholar 

  22. Ribeiro C C, Gibson I and Barbosa M A 2006 Biomaterials 27 1749

    Article  Google Scholar 

  23. Chen D Z, Tang C Y, Chan K C, Tsui C P, Peter H F, Leung M C et al 2007 J. Comp. Sci. Tech. 67 1617

  24. Lak A, Mazloumi M, Mohajerani M, Kajbafvala A, Zanganeh S, Arami H et al 2008 J. Am. Ceram. Soc. 91 3292

    Article  Google Scholar 

  25. Rhee S H and Tanaka J 2002 J. Mater. Sci.: Mater. Med. 13 597

    Google Scholar 

  26. Thomas V, Dean D R, Jose M V, Mathew B, Chowdhury S and Vohra Y K 2007 Biomacromolecules 8 631

    Article  Google Scholar 

  27. Barakat N A, Khalil K A, Sheikh F A, Omran A M, Gaihre B, Khil S M et al 2008 J. Mater. Sci. Eng. C 28 1381

    Article  Google Scholar 

  28. Sathyaseelan B, Baskaran I and Sivakumar K 2013 Soft Nanosci. Lett. 3 69

    Article  Google Scholar 

  29. Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee H A and Sriranganathan N 2014 Sci. Rep. 4 4392

  30. Zhang C, Zhang X, Liu C, Sun K and Yuan J 2016 Ceram. Int. 42 279

    Article  Google Scholar 

  31. Pandey A K, Pati F, Mandal D, Dhara S and Biswas K 2013 J. Mater. Sci. Eng. C 33 3923

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to PSG institutions for providing necessary facilities to carry out the research. The author, S Vignesh Raj, is grateful to UGC National fellowship F./2014-15/NFO-2014-15-TAM-OBC-10405/ (SA-III website) for providing PhD assistantship. This work was financially supported by UGC MRP file. no. 42-867/2013 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Rajkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh Raj, S., Rajkumar, M., Meenakshi Sundaram, N. et al. Synthesis and characterization of hydroxyapatite/alumina ceramic nanocomposites for biomedical applications. Bull Mater Sci 41, 93 (2018). https://doi.org/10.1007/s12034-018-1612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1612-4

Keywords

Navigation