Skip to main content
Log in

Efficient heat conducting liquid metal/CNT pads with thermal interface materials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Ga-Based thermal interface material (TIM) pads/sheets with high thermal conductivity (\(\kappa \)) are indispensable components in thermal management systems. Here, we present a feasible method to fabricate heat conduction pads, which are composed of carbon nanotubes embedded into a liquid metal (LM). This setup has resulted in a large increase of \(\kappa \) reaching \(\sim \)14.2 \(\hbox {W mK}^{-1}\), greater than that of most of the commercial thermal silicone pads (\({\sim }5~\hbox {W mK}^{-1})\). In addition, a series of experiments were conducted on smartphones to evaluate the heat dissipation performance of the CPU. It turned out that LM/nanotube pads with TIMs show distinguish thermal conductivity performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. David G C, Wayne K F, Kenneth E G, Gerald D M, Majumdar A, Humphrey J M et al 2003 J. Appl. Phys. 93 793

    Article  Google Scholar 

  2. Prasher R 2006 Proc. IEEE 94 1571

    Article  CAS  Google Scholar 

  3. Andrew J M, Joshi Y K and Zhang Z M M 2012 Int. J. Therm. Sci. 62 2

    Article  Google Scholar 

  4. Ferain I, Colinge C A and Colinge J P 2011 Nature 479 310

    Article  CAS  Google Scholar 

  5. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M and Ameloot R 2017 Chem. Soc. Rev. 46 3185

    Article  CAS  Google Scholar 

  6. Cohen A B, Kraus A D and Davidson S F 1983 Equip. Mech. Eng. 53 150

  7. Kraus A D and Cohen A B 1983 Thermal analysis and control of electronic equipment (Washington, DC: Hemisphere Publishing Corp)

  8. Xu Y S, Luo X C and Chung D D L 2002 J. Electron. Packag. 124 188

    Article  CAS  Google Scholar 

  9. Wolff E G and Schneider D A 1998 Int. J. Heat Mass Transfer 41 3469

    Article  CAS  Google Scholar 

  10. Gwinn J P and Webb R L 2003 J. Microelectron. 34 215

    Article  CAS  Google Scholar 

  11. Yang D J, Zhang Q, Chen G, Yoon S F, Ahn J, Wang S G et al 2002 Phys. Rev. B 66 1

    Google Scholar 

  12. Nieh H M, Teng T and Yu C C 2014 Int. J. Therm. Sci. 77 252

    Article  CAS  Google Scholar 

  13. Alshaer W G, Nada S A, Rady M A, Barrio E P D and Sommier A 2015 Int J. Therm. Sci. 89 79

    Article  CAS  Google Scholar 

  14. Lin Z Y, Liu H Q, Li Q G, Liu H, Chu S and Yang Y H 2018 Appl. Phys. A 124 1

    Google Scholar 

  15. Zhou W Y, Qi S H, Tu C C, Zhao H Z, Wang C F and Kou J L 2007 Appl. Polym. Sci. 104 1312

    Article  CAS  Google Scholar 

  16. Hill R F and Supancic P H 2002 J. Am. Ceram. Soc. 85 851

    Article  CAS  Google Scholar 

  17. Yung K C and Liem H 2007 J. Appl. Polym. Sci. 106 3587

    Article  CAS  Google Scholar 

  18. Zhi C Y, Bando Y S, Terao T, Tang C C, Kuwahara H and Golberg D 2009 Adv. Funct. Mater. 19 1857

    Article  CAS  Google Scholar 

  19. Lee E S, Lee S M, Shanefield D J and Cannon W R 2008 J. Am. Ceram. Soc. 91 1169

    Article  CAS  Google Scholar 

  20. Wang Q, Gao W and Xie Z M 2003 J. Appl. Polym. Sci. 89 2397

    Article  CAS  Google Scholar 

  21. Leea G W, Parka M, Kima J, Leeb J I and Yoon H 2006 Compos. A: Appl. Sci. Manuf. 37 727

  22. Yu W, Xie H Q, Yin L Q, Zhao J C, Xia L G and Chen L F 2015 Int. J. Therm. Sci. 91 76

    Article  CAS  Google Scholar 

  23. Bartlett M D, Kazem N, Powell P M J, Huang X N, Sun W H, Malen J A M et al 2017 PANS 13 1

    Google Scholar 

  24. Liang S Q, Li Y Y, Chen Y Z, Yang J B, Zhu T P, Zhu D Y et al 2017 J. Mater. Chem. C 5 15867

    Google Scholar 

  25. Zhu S, So J H, Mays R, Desai S, Barnes W R, Pourdeyhimi B et al 2013 Adv. Funct. Mater. 23 2308

    Article  CAS  Google Scholar 

  26. Khan M R, Hayes G J, Zhang S L, Michael D D and Lazzi G 2012 IEEE Microw. Wirel. Compon. Lett. 22 577

    Article  Google Scholar 

  27. Khoshmanesh K, Tang S Y, Zhu J Y, Schaefer S, Mitchell A and Kourosh K Z 2017 Lab Chip. 17 974

    Article  CAS  Google Scholar 

  28. Larsson D H, Lundström U, Westermark U K, Henriksson M A, Burvall A and Hans M H 2013 Med. Phys. 40 021909

    Article  Google Scholar 

  29. Yang X H and Liu J 2018 Front. Energy 12 259

    Article  Google Scholar 

  30. Ge H S, Li H Y, Mei S F and Liu J 2013 Renew. Sustain. Energy Rev. 21 331

    Article  CAS  Google Scholar 

  31. Wang J, Zhao X J, Cai Y X, Zhang C and Bao W W 2015 Energy Convers. Manage. 101 532

    Article  Google Scholar 

  32. Zhao L Y, Liu H Q, Chen X C, Chu S, Liu H, Lin Z Y et al 2018 JMCC 6 10611

    CAS  Google Scholar 

  33. Iijima S 1991 Nature 354 56

    Article  CAS  Google Scholar 

  34. Wang Q and Arash B 2014 Comput. Mater. Sci. 82 350

    Article  CAS  Google Scholar 

  35. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al 2014 Nanoscale Res. Lett. 9 1

  36. Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y et al 2016 Prog. Polym. Sci. 59 41

    Article  CAS  Google Scholar 

  37. Hong W T and Tai N H 2008 Diam. Relat. Mater. 17 1577

    Article  CAS  Google Scholar 

  38. Lin W, Moon K S and Wong C P 2009 Adv. Mater. 21 2421

    Article  CAS  Google Scholar 

  39. Gou Y J, Liu Z L, Zhang G M and Li Y X 2014 Int. J. Heat Mass Transfer 74 358

    Article  CAS  Google Scholar 

  40. Stroscio M A, Dutta M, Kahn D and Kim K W 2001 Superlattices Microstruct. 29 405

    Article  CAS  Google Scholar 

  41. Grujicic M and Cao B G 2004 Mater. Sci. Eng. B 107 204

    Article  Google Scholar 

  42. Hepplestone S P, Ciavarella A M, Janke C and Srivastava G P 2006 Surf. Sci. 600 3633

    Article  CAS  Google Scholar 

  43. Nan C W, Shi Z and Lin Y 2003 Chem. Phys. Lett. 375 666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation of China (Grant Nos. 11204097 and U1530120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuying Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Chu, S., Chen, X. et al. Efficient heat conducting liquid metal/CNT pads with thermal interface materials. Bull Mater Sci 42, 192 (2019). https://doi.org/10.1007/s12034-019-1872-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1872-7

Keywords

Navigation