Skip to main content
Log in

A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

An electrically conductive polypyrrole–tungsten disulphide (\({\hbox {PPy/WS}}_{2}\)) composite was synthesized by a chemical polymerization technique. The composite was characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). FESEM images showed the grainy morphology with permeable nature. XRD and FTIR characteristic peak analysis exhibited semi-crystalline behaviour and confirming the interfacial interaction of the as-synthesized composite. EDX confirmed the presence of carbon, nitrogen, oxygen, tungsten and sulphur in the composite. The humidity sensing property of the \({\hbox {PPy/WS}}_{2}\)-50% composite was tested and an approximate linear decrease in resistance was observed with an increase in relative humidity, along with a maximum sensing response of 97% and a response-recovery time of 52 and 58 s, respectively. The sensing ability of the composite was observed to be stable, when monitored for a period of two months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hatchett D W and Josowicz M 2008 Chem. Rev. 108 746

    Article  CAS  Google Scholar 

  2. Farahani H, Wagiran R and Hamidon M N 2014 Sensors 14 7881

    Article  Google Scholar 

  3. Manjunatha S, Sunilkumar A and Machappa T 2018 AIP Conf. Proc. 1953 030019-1

  4. Vishnoi P, Rajesh S, Manjunatha S, Bandyopadhyay A, Barua M and Pati S K 2017 ChemPhysChem18 2985

    Article  CAS  Google Scholar 

  5. Rao C N R, Gopalakrishnan K and Maitra U 2015 ACS Appl. Mater. Interfaces 7 7809

    Article  CAS  Google Scholar 

  6. Manjunatha S, Rajesh S, Vishnoi P and Rao C N R 2017 J. Mater. Res. 32 2984

    Article  CAS  Google Scholar 

  7. Manjunatha S, Chethan B, Ravikiran Y T and Machappa T 2018 AIP Conf. Proc. 1953 030096-1

  8. Manjunatha S, Machappa T, Ravikiran Y T, Chethan B and Sunilkumar A 2019 Physica B Phys. Condens. Matter. 561 170

    Article  CAS  Google Scholar 

  9. Chaluvaraju B V, Ganiger S K and Murugendrappa M V 2016 J. Mater. Sci.: Mater. Electron. 27 1044

    CAS  Google Scholar 

  10. Suri K, Annapoorni S, Sarkar A K and Tandon R P 2002 Sens. Actuators B Chem. 81 277

    Article  CAS  Google Scholar 

  11. Raj A M E S, Magdalane C M and Nagaraja K S 2002 Phys. Stat. Sol. (A) 234 230

  12. Su P and Huang L 2007 Sens. Actuators B Chem. 123 501

    Article  CAS  Google Scholar 

  13. Sajjan K C, Faisal M, Kumari S C V, Ravikiran Y T and Khasim S 2013 AIP Conf. Proc. 289 289

    Article  Google Scholar 

  14. Wang L, He Y, Hu J, Qi Q and Zhang T 2011 Sens. Actuators B Chem. 153 460

    Article  CAS  Google Scholar 

  15. Machappa T and Prasad M V N A 2012 Bull. Mater. Sci. 35 75

    Article  CAS  Google Scholar 

  16. Machappa T, Sasikala M, Anilkumar K R and Prasad M V N A 2009 Sens. Transducers 107 77

    CAS  Google Scholar 

  17. Chethan B, Raj Prakash H G, Ravikiran Y T, Vijaya Kumari S C, Ramana C H V V and Thomas S 2019 Talanta 196 337

    Article  CAS  Google Scholar 

  18. Sun A, Li Z, Wei T, Li Y and Cui P 2009 Sens. Actuators B Chem. 142 197

    Article  CAS  Google Scholar 

  19. Patil S N, Pawar A M, Tilekar S K and Ladgaonkar B P 2016 Sens. Actuators A Phys. 244 35

    Article  CAS  Google Scholar 

  20. Suhada N, Tahiruddin M, Daik R and Selangor B 2015 Sch. Res. Libr. 7 159

    Google Scholar 

  21. Vishnuvardhan T K, Kulkarni V R, Basavaraja C and Raghavendra S C 2006 Bull. Mater. Sci. 29 77

    Article  CAS  Google Scholar 

  22. Park K and Noida G 2016 Int. J. Sci. Eng. Stud. 3 7

    Google Scholar 

  23. Mane A T, Navale S T, Pawar R C, Lee C S and Patil V B 2015 Synth. Met. 199 187

    Article  CAS  Google Scholar 

  24. Kotresh S, Ravikiran Y T, Vijay Kumari S C, Chandrasekhar T, Ramana C H V V and Thomas S 2016 Mater. Manuf. Process31 1976

    Article  CAS  Google Scholar 

  25. Lin W, Chang H and Wu R 2013 Sens. Actuators B Chem. 181 326

  26. Manjunatha S, Machappa T, Sunilkumar A and Ravikiran Y T 2018 J. Mater. Sci. Mater. Electron. 29 11581

  27. Chougule M A, Dalavi D S, Patil P S, Moholkar A V, Agawane G L and Kim J H 2012 Measurement45 1989

  28. Walter C, Kummer K, Vyalikh D and Quade A 2012 J. Electrochem. Soc. 159 560

    Article  Google Scholar 

  29. Tandon R P, Tripathy M R, Arora A K and Hotchandani S 2006 Sens. Actuators B114 768

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors thank Dr Yashvanth Bhupal, Director, Ballari Institute of Technology and Management, Ballari, for his support. S Manjunatha thanks Sri D K Mohan, Chairman and Dr L Suresh, Principal of Cambridge Institute of Technology, Bengaluru for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Machappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunilkumar, A., Manjunatha, S., Machappa, T. et al. A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull Mater Sci 42, 271 (2019). https://doi.org/10.1007/s12034-019-1955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1955-5

Keywords

Navigation