Skip to main content
Log in

Characterization and molecular dynamic studies of chitosan–iron complexes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan–iron (Cs–Fe) complexes are prepared electrochemically in an aqueous acidic medium in one-compartment cell at different times. XRD pattern of Cs–Fe complex samples has been investigated in the range from 5° to 50° and revealed that chitosan is characterized by certain crystalline peaks at 8.73°, 11.92° and 18.96°. In addition, the crystallinity of Cs–Fe complex samples is increased with increasing the content of Fe3+. Ultraviolet–visible (UV–Vis) and Fourier transform-infrared (FTIR) spectroscopies have been used to investigate the optical properties of Cs–Fe complex samples. UV analysis showed that pure chitosan is characterized by absorption band at 214 nm resulted from the amide linkages and at 311 nm, as a shoulder which is attributed to intraligand n → π and π → π* transitions of the chromophoric C=O group. On the other hand, two new bands are observed in Cs–Fe complex samples at nearly 350 and 389 nm with increasing Fe3+ content. The optical parameters of all the samples, such as optical band gap energy (Eg), Urbach energy (EU), dispersion energy (Ed) and oscillator energy (Eo) have been estimated. It is found that these parameters are significantly affected due to the Fe3+ content. FTIR spectra revealed that many of the characteristic bands of pure chitosan have been affected either in its position or its intensity due to the presence of Fe3+, confirming that the formation of complex between chitosan and Fe3+ is occurred. Dielectric relaxation spectroscopy technique has been used to investigate the dielectric properties of pure chitosan and Cs–Fe complex samples in a wide range frequency and a temperature range extended from RT to 433 K. The investigation showed that the existence of Fe3+ resulted in a modification in the dielectric constant (ε′) and dielectric loss (ε′′) behaviour. Dielectric loss tangent (tan δ) showed that pure chitosan is characterized by two different types of relaxations, whereas Cs–Fe complex samples are characterized by only one relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Kumar M N, Muzzarelli R A A, Muzzarelli C, Sashiwa H and Domb A J 2004 Chem. Rev. 104 6017

    Article  Google Scholar 

  2. Won W, Feng X and Lawless D 2002 J. Membr. Sci. 209 493

    Article  CAS  Google Scholar 

  3. Nunthanid J, Anan M L, Sriamornsak P, Limmatvapirat S, Puttipipatkhachorn S, Lim L Y et al 2004 J. Control. Release 99 15

    Article  CAS  Google Scholar 

  4. Puttipipatkhachorn S, Nunthanid J, Yamamoto K and Peck G E 2001 J. Control. Release 75 143

    Article  CAS  Google Scholar 

  5. Crini G 2006 Bioresour. Technol. 97 1061

    Article  CAS  Google Scholar 

  6. Fries C A, Ayalew Y, Barwell J G P, Porter K, Jeffery S L and Midwinter M J 2014 Injury 45 1111

    Article  CAS  Google Scholar 

  7. Shao J, Wang B, Li J, Jansen J A, Walboomers X F and Yang F 2019 Mater. Sci. Eng. C 98 1053

    Article  CAS  Google Scholar 

  8. Das M, Chiellini F, Ottenbrite R M and Chiellini E 2011 Prog. Polym. Sci. 36 981

    Article  CAS  Google Scholar 

  9. Wang J and Zhao K 2012 Colloids Surf. A: Physicochem. Eng. Asp. 396 270

    Article  CAS  Google Scholar 

  10. Guibal E 2004 Purif. Technol. 38 43

    Article  CAS  Google Scholar 

  11. Domard A 1987 Int. J. Biol. Macromol. 9 333

    Article  CAS  Google Scholar 

  12. Rashid S, Shen C, Yang J, Liu J and Li J 2018 J. Environ. Sci. 66 301

    Article  Google Scholar 

  13. Bhatia S C and Ravi N 2000 Biomacromolecules 1 413

    Article  CAS  Google Scholar 

  14. Burke A, Yilmaz E, Hasirci N and Yilmaz O 2002 J. Appl. Polym. Sci. 84 1185

    Article  CAS  Google Scholar 

  15. Fahmy T, Elhendawi H, Elsharkawy W B and Reicha F M 2020 Bull. Mater. Sci. 43 1

    Article  CAS  Google Scholar 

  16. Wang X, Du Y, Fan L, Liu H and Hu Y 2005 Polym. Bull. 55 105

    Article  CAS  Google Scholar 

  17. Zawodzinski T A, Derouin C, Radzinski S, Sherman R J, Smith V T, Springer T E et al 1993 J. Electrochem. Soc. 140 1041

    Article  CAS  Google Scholar 

  18. Natesan B, Karan N K and Katiyar R S 2006 Phys. Rev. E 74 042801

    Article  CAS  Google Scholar 

  19. Chybczyńska K, Markiewicz E, Zasadzińska A G and Borysiak S 2019 Ceram. Int. 45 9468

    Article  CAS  Google Scholar 

  20. Fahmy T, Ahmed M T, El-Kotp A, Abdelwahed H G and Alshaeer M Y 2016 Inter. J. Phys. Appl. 8 1

    CAS  Google Scholar 

  21. Shukur M F, Majid N A, Ithnin R and Kadir M F Z 2013 Phys. Scr. T157 014051

    Article  CAS  Google Scholar 

  22. Fahmy T, Ahmed M T, Sarhan A, Abdelwahed H G and Alshaaer M Y 2016 Inter. J. Appl. Eng. Res. 11 9279

    Google Scholar 

  23. Migahed M D, Ishra M, Fahmy T and Barakat A 2004 J. Phys. Chem. Solids 65 1121

    Article  CAS  Google Scholar 

  24. Fahmy T and Ahmed M T 2011 J. Korean Phys. Soc. 58 1654

    Article  CAS  Google Scholar 

  25. Ali A, Elmahdy M M, Sarhan A, Abdel Hamid M I and Ahmed M T 2018 Polym. Int. 67 1615

    Article  CAS  Google Scholar 

  26. Wang S, Shen L, Zhang W and Tong Y 2005 Biomacromolecules 6 3067

    Article  CAS  Google Scholar 

  27. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H et al 2001 J. Biomed. Mater. Res. 55 20

    Article  CAS  Google Scholar 

  28. Hernandez R B, Yala O R and Merce A L R 2007 J. Braz. Chem. Soc. 18 1388

    Article  CAS  Google Scholar 

  29. Hernández R B, Franco A P, Yola O R, Delgado A L, Felcman J, Recio M A L et al 2008 J. Mol. Struct. 877 89

    Article  CAS  Google Scholar 

  30. Lever A B P 1984 Inorganic electronic spectroscopy (The Netherlands: Elsevier)

  31. Ballato J, Foulger S and Smith D W 2003 J. Opt. Soc. Am. B 20 1838

    Article  CAS  Google Scholar 

  32. Tauc J, Menth A and Wood D 1970 Phys. Rev. Lett. 25 749

    Article  CAS  Google Scholar 

  33. Alia H E and Khairy Y 2019 Physica B: Condens. Matter 570 41

    Article  CAS  Google Scholar 

  34. Devi C U, Sharma A K and Rao V V R N 2002 Mater. Lett. 56 167

    Article  CAS  Google Scholar 

  35. Urbach F 1953 Phys. Rev. 92 1324

    Article  CAS  Google Scholar 

  36. Matin R and Bhuiyan A H 2013 Thin Solid Films 534 100

    Article  CAS  Google Scholar 

  37. Fahmy T, Sarhan A, Elsayed I A and Ahmed M T 2018 J. Adv. Phys. 14 5378

    Article  CAS  Google Scholar 

  38. Fahmy T, Sarhan A and Elqahtani Z M 2020 Int. J. Eng. Res. Technol. 13 454

    Article  Google Scholar 

  39. Wemple S H and DiDomenico Jr M 1971 Phys. Rev. B 3 1338

    Article  Google Scholar 

  40. Wemple S H 1973 Phys. Rev. B 7 3767

    Article  CAS  Google Scholar 

  41. Pankove I J 1971 Optical processes in semiconductors (NY, USA: Prentice Hall)

  42. Balevaa M, Goranova E, Darakchieva V, Kossionides S, Kokkosis M and Jordanov P 2003 Vacuum 69 425

    Article  Google Scholar 

  43. Cui Z, Xiang Y, Si J, Yang M, Zhang Q and Zhang T 2008 Carbohydr. Polym. 73 111

    Article  CAS  Google Scholar 

  44. Jin L and Bai R 2002 Langmuir 18 9765

    Article  CAS  Google Scholar 

  45. Sipos P, Berkesi O, Tombacz E, Pierre T G and Webb J 2003 J. Inorg. Biochem. 95 55

    Article  CAS  Google Scholar 

  46. Rajiv P, Bavadharani B, Kumar M N and Vanathi P 2017 Biocatal. Agric. Biotechnol. 12 45

    Article  Google Scholar 

  47. Fahmy T 2001 Inter. J. Polym. Mater. 50 109

    Article  CAS  Google Scholar 

  48. Li Y Q, Zhang C X, Jia P, Zhang Y, Lin L, Yan Z B et al 2018 J. Materiomics 4 35

    Article  Google Scholar 

  49. Trivino D G Z, Prokhorov E, Barcenas G L, Nonell J M, Campos J B G, Pena E E et al 2015 Mater. Chem. Phys. 155 252

    Article  CAS  Google Scholar 

  50. Fahmy T and Ahmed M T 2003 J. Polym. Mater. 20 367

    CAS  Google Scholar 

  51. Furukawa T, Imura M and Yuruzume H 1997 Jpn. J. Appl. Phys. 36 1119

    Article  CAS  Google Scholar 

  52. Dang Z M, Yuan J-K, Zha J-W, Zhou T, Li S-T and Hu G-H 2012 Prog. Mater. Sci. 57 660

    Article  CAS  Google Scholar 

  53. Saravanan A and Ramasamy R P 2016 J. Polym. Res. 23 104

    Article  CAS  Google Scholar 

  54. Campos J B G, Prokhorov E, Barcenas G L, Sanchez I C and Kovalenko Y 2009 Macromol. Symp. 283–284 199

    Article  CAS  Google Scholar 

  55. Zhang T-F, Tang X-G, Liu Q-X, Lu S-G, Jiang Y-P, Huang X-X et al 2014 Ceram. AIP Adv. 4 107141

    Article  CAS  Google Scholar 

  56. Campos J B G, Prokhorov E, Barcenas G L, Garcia A F and Sanchez I C 2009 J. Polym. Sci. Part B: Polym. Phys. 47 2259

  57. Luo S, Yu S, Sun R and Wong C-P 2014 ACS Appl. Mater. Interfaces 6 176

    Article  CAS  Google Scholar 

  58. Psarrasa G C, Manolakaki E and Tsangaris G M 2003 Composites: Part A 34 1187

  59. Fahmy T and Elzanaty H 2019 Bull. Mater. Sci. 42 220

    Article  CAS  Google Scholar 

  60. Fahmy T 2007 Poylm.-Plast. Technol. Eng. 46 7

  61. Fan L, Dang Z, Wei G, Nan C W and Li M 2003 Mater. Sci. Eng. B 99 340

    Article  CAS  Google Scholar 

  62. Sengwa R J 2003 Indian J. Pure Appl. Phys. 41 295

    CAS  Google Scholar 

  63. Kumar S, Prajapati G K, Saroj A L and Gupta P N 2019 Physica B: Condens. Matter 554 158

    Article  CAS  Google Scholar 

  64. Abutalib M M 2019 Physica B: Condens. Matter 557 108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (T Fahmy) would like to thank Scientific Research Deanship, Prince Sattam Bin Abdulaziz University, KSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Fahmy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmy, T., Sarhan, A. Characterization and molecular dynamic studies of chitosan–iron complexes. Bull Mater Sci 44, 142 (2021). https://doi.org/10.1007/s12034-021-02434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02434-1

Keywords

Navigation