Skip to main content

Advertisement

Log in

Combining Disrupted and Discriminative Topological Properties of Functional Connectivity Networks as Neuroimaging Biomarkers for Accurate Diagnosis of Early Tourette Syndrome Children

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tourette syndrome (TS) is a childhood-onset neurological disorder. To date, accurate TS diagnosis remains challenging due to its varied clinical expressions and dependency on qualitative description of symptoms. Therefore, identifying accurate and objective neuroimaging biomarkers may help improve early TS diagnosis. As resting-state functional MRI (rs-fMRI) has been demonstrated as a promising neuroimaging tool for TS diagnosis, previous rs-fMRI studies on TS revealed functional connectivity (FC) changes in a few local brain networks or circuits. However, no study explored the disrupted topological organization of whole-brain FC networks in TS children. Meanwhile, very few studies have examined brain functional networks using machine-learning methods for diagnostics. In this study, we construct individual whole-brain, ROI-level FC networks for 29 drug-naive TS children and 37 healthy children. Then, we use graph theory analysis to investigate the topological disruptions between groups. The identified disrupted regions in FC networks not only involved the sensorimotor association regions but also the visual, default-mode and language areas, all highly related to TS. Furthermore, we propose a novel classification framework based on similarity network fusion (SNF) algorithm, to both diagnose an individual subject and explore the discriminative power of FC network topological properties in distinguishing between TS children and controls. We achieved a high accuracy of 88.79%, and the involved discriminative regions for classification were also highly related to TS. Together, both the disrupted topological properties between groups and the discriminative topological features for classification may be considered as comprehensive and helpful neuroimaging biomarkers for assisting the clinical TS diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TS:

Tourette syndrome

rs-fMRI:

Resting-state functional magnetic resonance imaging

FC:

Functional connectivity

DTI:

Fiffusion tensor imaging

WM:

White matter

YGTSS:

Yale Global Tic Severity Scale

SNF:

Similarity network fusion

References

  1. Lombroso PJ, Scahill L (2008) Tourette syndrome and obsessive–compulsive disorder. Brain Dev 30(4):231–237

    Article  PubMed  Google Scholar 

  2. Stokes A, Bawden HN, Camfield PR, Backman JE, Dooley JM (1991) Peer problems in Tourette’s disorder. Pediatrics 87(6):936–942

    CAS  PubMed  Google Scholar 

  3. Cavanna AE, Servo S, Monaco F, Robertson MM (2009) The behavioral spectrum of Gilles de la Tourette syndrome. The Journal of neuropsychiatry and clinical neurosciences 21(1):13–23. doi:10.1176/appi.neuropsych.21.1.13

    Article  PubMed  Google Scholar 

  4. Scharf JM, Miller LL, Gauvin CA, Alabiso J, Mathews CA, Ben-Shlomo Y (2015) Population prevalence of Tourette syndrome: a systematic review and meta-analysis. Movement disorders : official journal of the Movement Disorder Society 30(2):221–228. doi:10.1002/mds.26089

    Article  Google Scholar 

  5. Cavanna AE, Seri S (2013) Tourette’s syndrome. BMJ 347(2):67–71

    Google Scholar 

  6. Cui Y, Jin Z, Chen X, He Y, Liang X, Zheng Y (2014) Abnormal baseline brain activity in drug-naive patients with Tourette syndrome: a resting-state fMRI study. Front Hum Neurosci 7:913. doi:10.3389/fnhum.2013.00913

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ganos C, Kahl U, Brandt V, Schunke O, Bäumer T, Thomalla G, Roessner V, Haggard P et al (2014) The neural correlates of tic inhibition in Gilles de la Tourette syndrome. Neuropsychologia 65(1624):297–301

    Article  PubMed  Google Scholar 

  8. Greene DJ, Schlaggar BL, Black KJ (2015) Neuroimaging in Tourette syndrome: research highlights from 2014 to 2015. Current developmental disorders reports 2(4):300–308

    Article  PubMed  PubMed Central  Google Scholar 

  9. Church JA, Fair DA, Dosenbach NU, Cohen AL, Miezin FM, Petersen SE, Schlaggar BL (2009) Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132(Pt 1):225–238. doi:10.1093/brain/awn223

    Article  PubMed  Google Scholar 

  10. Werner CJ, Stocker T, Kellermann T, Wegener HP, Schneider F, Shah NJ, Neuner I (2010) Altered amygdala functional connectivity in adult Tourette’s syndrome. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S95–S99. doi:10.1007/s00406-010-0161-7

    Article  PubMed  Google Scholar 

  11. Worbe Y, Malherbe C, Hartmann A, Pelegrini-Issac M, Messe A, Vidailhet M, Lehericy S, Benali H (2012) Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. Brain 135(Pt 6):1937–1946. doi:10.1093/brain/aws056

    Article  PubMed  Google Scholar 

  12. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  13. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342. doi:10.1093/cercor/bhi016

    Article  PubMed  Google Scholar 

  14. Wang J, Li T, Wang N, Xian J, He H (2016) Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients. Eur Radiol. doi:10.1007/s00330-016-4221-x

    Google Scholar 

  15. Cerasa A, Castiglioni I, Salvatore C, Funaro A, Martino I, Alfano S, Donzuso G, Perrotta P et al (2015) Biomarkers of eating disorders using support vector machine analysis of structural neuroimaging data: preliminary results. Behav Neurol 51(1):50–62

    Google Scholar 

  16. Liu F, Wee CY, Chen H, Shen D (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84:466–475. doi:10.1016/j.neuroimage.2013.09.015

    Article  PubMed  Google Scholar 

  17. Chi M, Guo S, Ning Y, Li J, Qi H, Gao M, Wang J, Hu X et al (2014) Using support vector machine to identify imaging biomarkers of major depressive disorder and anxious depression. Springer, Berlin Heidelberg

    Book  Google Scholar 

  18. Dai D, Wang J, Hua J, He H (2012) Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci 6:63–63

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dai D, He H, Vogelstein JT, Hou Z (2013) Accurate prediction of AD patients using cortical thickness networks. Machine Vision & Applications 24(7):1445–1457

    Article  Google Scholar 

  20. Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D (2014) Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng 61(2):576–589. doi:10.1109/TBME.2013.2284195

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jin Y, Wee CY, Shi F, Thung KH, Ni D, Yap PT, Shen D (2015) Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks. Human brain mapping

  22. Sacchet MD, Prasad G, Folandross LC, Thompson PM, Gotlib IH (2015) Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Frontiers in psychiatry 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  23. Greene DJ, Church JA, Dosenbach NUF, Nielsen AN, Adeyemo B, Nardos B, Petersen SE, Black KJ et al (2016) Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI. Dev Sci

  24. Liao W, Yu Y, Miao H-H, Feng Y-X, Ji G-J, Feng J-H (2016) Inter-hemispheric intrinsic connectivity as a neuromarker for the diagnosis of boys with Tourette syndrome. Mol Neurobiol 1–9

  25. Wen H, Liu Y, Wang J, Zhang J, Peng Y, He H (2016) A diagnosis model for early Tourette syndrome children based on brain structural network characteristics. In: SPIE Medical Imaging. International Society for Optics and Photonics, p 97852R-97852R-97859

  26. Golden GS (1977) The effect of central nervous system stimulants on Tourette syndrome. Ann Neurol 2(1):69–70

    Article  CAS  PubMed  Google Scholar 

  27. Scahill L, Riddle MA, McSwiggin-Hardin M, Ort SI, King RA, Goodman WK, Cicchetti D, Leckman JF (1997) Children’s Yale-Brown obsessive compulsive scale: reliability and validity. J Am Acad Child Adolesc Psychiatry 36(6):844–852. doi:10.1097/00004583-199706000-00023

    Article  CAS  PubMed  Google Scholar 

  28. Retz-Junginger P, Retz W, Blocher D, Stieglitz RD, Georg T, Supprian T, Wender PH, Rosler M (2003) Reliability and validity of the Wender-Utah-Rating-Scale short form. Retrospective assessment of symptoms for attention deficit/hyperactivity disorder. Nervenarzt 74(11):987–993. doi:10.1007/s00115-002-1447-4

    Article  CAS  PubMed  Google Scholar 

  29. Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, Stevenson J, Cohen DJ (1989) The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 28(4):566–573. doi:10.1097/00004583-198907000-00015

    Article  CAS  PubMed  Google Scholar 

  30. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289

    Article  CAS  PubMed  Google Scholar 

  31. Cao Q, Shu N, An L, Wang P, Sun L, Xia MR, Wang JH, Gong GL et al (2013) Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J Neurosci 33(26):10676–10687. doi:10.1523/JNEUROSCI.4793-12.2013

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4:16. doi:10.3389/fnsys.2010.00016

    PubMed  PubMed Central  Google Scholar 

  33. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132(Pt 12):3366–3379. doi:10.1093/brain/awp089

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342. doi:10.1016/j.biopsych.2011.05.018

    Article  PubMed  Google Scholar 

  35. Zhang D, Liu X, Chen J, Liu B, Wang J (2015) Widespread increase of functional connectivity in Parkinson’s disease with tremor: a resting-state FMRI study. Front Aging Neurosci 7:6. doi:10.3389/fnagi.2015.00006

    PubMed  PubMed Central  Google Scholar 

  36. Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. doi:10.3389/fnhum.2015.00386

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11(3):333–337. doi:10.1038/nmeth.2810

    Article  CAS  PubMed  Google Scholar 

  38. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422. doi:10.1023/A:1012487302797

    Article  Google Scholar 

  39. Wen H, Liu Y, Rekik I, Wang S, Chen Z, Zhang J, Zhang Y, Peng Y et al (2017) Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children. Pattern Recogn 63:601–611

    Article  Google Scholar 

  40. Wilson SM, Ogar JM, Laluz V, Growdon M, Jang J, Glenn S, Miller BL, Weiner MW et al (2009) Automated MRI-based classification of primary progressive aphasia variants. NeuroImage 47(4):1558–1567. doi:10.1016/j.neuroimage.2009.05.085

    Article  PubMed  PubMed Central  Google Scholar 

  41. Benjamini Y, Hochberg Y (2015) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc 57(57):289–300

    Google Scholar 

  42. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72. doi:10.1523/JNEUROSCI.3874-05.2006

    Article  CAS  PubMed  Google Scholar 

  43. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10):2407–2419. doi:10.1093/cercor/bhl149

    Article  PubMed  Google Scholar 

  44. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40(3):1064–1076. doi:10.1016/j.neuroimage.2007.10.060

    Article  PubMed  Google Scholar 

  45. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536. doi:10.1093/cercor/bhn102

    Article  PubMed  Google Scholar 

  46. Liu T, Chen Y, Lin P, Wang J (2015) Small-world brain functional networks in children with attention-deficit/hyperactivity disorder revealed by EEG synchrony. Clinical EEG and neuroscience 46(3):183–191. doi:10.1177/1550059414523959

    Article  PubMed  Google Scholar 

  47. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30(2):638–649. doi:10.1002/hbm.20530

    Article  CAS  PubMed  Google Scholar 

  48. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701. doi:10.1103/PhysRevLett.87.198701

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Miao W, Wang J, Gao P, Yin G, Zhang L, Lv C, Ji Z et al (2013) Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study. PLoS One 8(9):e76105. doi:10.1371/journal.pone.0076105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wen H, Liu Y, Wang J, Rekik I, Zhang J, Zhang Y, Tian H, Peng Y et al (2016) Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children. Hum Brain Mapp 37(5):1903–1919. doi:10.1002/hbm.23146

    Article  PubMed  Google Scholar 

  51. Liu Y, Duan YY, He Y, Wang J, Xia MR, Yu CS, Dong HQ, Ye J et al (2012) Altered topological organization of white matter structural networks in patients with neuromyelitis optica. PLoS One 7(11):e48846. doi:10.1371/journal.pone.0048846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS One 2(10):e1049. doi:10.1371/journal.pone.0001049

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu J, Qian Z, Tao L, Ding S (2013) The comparison of orientation and methods of hubs in the resting state functional brain network. Journal of Biomedical Engineering Research 3:006

    Google Scholar 

  54. Tang Y, Long J, Wang W, Liao J, Xie H, Zhao G, Zhang H (2016) Aberrant functional brain connectome in people with antisocial personality disorder. Sci Rep 6:26209. doi:10.1038/srep26209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Asis-Cruz J, Bouyssi-Kobar M, Evangelou I, Vezina G, Limperopoulos C (2015) Functional properties of resting state networks in healthy full-term newborns. Sci Rep 5:17755. doi:10.1038/srep17755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yuan W, Wade SL, Babcock L (2015) Structural connectivity abnormality in children with acute mild traumatic brain injury using graph theoretical analysis. Hum Brain Mapp 36(2):779–792. doi:10.1002/hbm.22664

    Article  PubMed  Google Scholar 

  57. Worbe Y, Marrakchi-Kacem L, Lecomte S, Valabregue R, Poupon F, Guevara P, Tucholka A, Mangin JF et al (2015) Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain 138(Pt 2):472–482. doi:10.1093/brain/awu311

    Article  PubMed  Google Scholar 

  58. Tinaz S, Belluscio BA, Malone P, Veen JWVD, Hallett M, Horovitz SG (2014) Role of the sensorimotor cortex in Tourette syndrome using multimodal imaging. Hum Brain Mapp 35(12):5834–5846

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ludolph AG, Juengling FD, Libal G, Ludolph AC, Fegert JM, Kassubek J (2006) Grey-matter abnormalities in boys with Tourette syndrome: Magnetic resonance imaging study using optimised voxel-based morphometry. The British journal of psychiatry : the journal of mental science 188:484–485. doi:10.1192/bjp.bp.105.008813

    Article  Google Scholar 

  60. Worbe Y, Gerardin E, Hartmann A, Valabrégue R, Chupin M, Tremblay L, Vidailhet M, Colliot O et al (2010) Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. Brain 133(Pt 12):3649–3660

    Article  PubMed  Google Scholar 

  61. Gates L, Clarke JA, Somorjai R, Jarmasz M, Vandorpe R, Dursun SM (2004) Neuroanatomy of coprolalia in Tourette syndrome using functional magnetic resonance imaging. Prog Neuro-Psychopharmacol Biol Psychiatry 28(2):397–400

    Article  Google Scholar 

  62. Thomalla G, Jonas M, Baumer T, Siebner HR, Biermann-Ruben K, Ganos C, Orth M, Hummel FC et al (2014) Costs of control: Decreased motor cortex engagement during a Go/NoGo task in Tourette’s syndrome. Brain 137(Pt 1):122–136. doi:10.1093/brain/awt288

    Article  PubMed  Google Scholar 

  63. Buse J, Beste C, Herrmann E, Roessner V (2015) Neural correlates of altered sensorimotor gating in boys with Tourette Syndrome: a combined EMG/fMRI study. World J Biol Psychiatry 1–11. doi:10.3109/15622975.2015.1112033

  64. Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, Kansaku K, Wurzman R, Hallett M (2006) Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129(Pt 8):2029–2037. doi:10.1093/brain/awl050

    Article  CAS  PubMed  Google Scholar 

  65. Zapparoli L, Porta M, Paulesu E (2015) The anarchic brain in action: the contribution of task-based fMRI studies to the understanding of Gilles de la Tourette syndrome. Curr Opin Neurol 28(6):604–611. doi:10.1097/WCO.0000000000000261

    Article  PubMed  Google Scholar 

  66. Roessner V, Overlack S, Schmidt-Samoa C, Baudewig J, Dechent P, Rothenberger A, Helms G (2011) Increased putamen and callosal motor subregion in treatment-naive boys with Tourette syndrome indicates changes in the bihemispheric motor network. Journal of child psychology and psychiatry, and allied disciplines 52(3):306–314. doi:10.1111/j.1469-7610.2010.02324.x

    Article  PubMed  Google Scholar 

  67. Stern E, Silbersweig DA, Chee KY, Holmes A, Robertson MM, Trimble M, Frith CD, Frackowiak RS et al (2000) A functional neuroanatomy of tics in Tourette syndrome. Arch Gen Psychiatry 57(8):741–748

    Article  CAS  PubMed  Google Scholar 

  68. Felling RJ, Singer HS (2011) Neurobiology of tourette syndrome: current status and need for further investigation. Journal of Neuroscience the Official Journal of the Society for Neuroscience 31(35):12387–12395

    Article  CAS  Google Scholar 

  69. Robertson MM (2000) Tourette syndrome, associated conditions and the complexities of treatment. Brain 123:425–462. doi:10.1093/brain/123.3.425

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hao Huang at University of Pennsylvania for consultation and support on MR pulse sequences.

This work was supported by the National Natural Science Foundation of China (91520202, 61271151, 31271161, 81671651), Youth Innovation Promotion Association CAS and Beijing Municipal Administration of Hospitals Incubating Program (PX2016035), and Beijing Health System Top level Health Technical Personnel Training Plan (2015-3-082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Peng or Huiguang He.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, H., Liu, Y., Rekik, I. et al. Combining Disrupted and Discriminative Topological Properties of Functional Connectivity Networks as Neuroimaging Biomarkers for Accurate Diagnosis of Early Tourette Syndrome Children. Mol Neurobiol 55, 3251–3269 (2018). https://doi.org/10.1007/s12035-017-0519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0519-1

Keywords

Navigation