Skip to main content
Log in

The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth’s history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison C W and Hilgert J W 1986 Scale microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada; Precambrian Res. 43 253–294

    Google Scholar 

  • Altermann W and Schopf J W 1995 Microfossils from the Neoarchean Campbell Group, Griqualand West sequence of the Transvaal Supergroup, and their paleonvironmental and evolutionary implications; Precambrian Res. 75 65–90

    CAS  PubMed  Google Scholar 

  • Awramik S M, Schopf J W and Walter M R 1983 Filamentous fossil bacteria from the Archean of Western Australia; Precambrian Res. 20 357–374

    Google Scholar 

  • Barghoorn E S and Tyler S A 1965 Microorganisms from the Gunflint chert; Science 147 563–577

    CAS  PubMed  Google Scholar 

  • Bengtson S and Rasmussen B 2009 New and Ancient Trace Makers; Science 323 346–347

    CAS  PubMed  Google Scholar 

  • Bengtson S, Rasmussen B and Krapež B 2007 The Paleoproterozoic megascopic Stirling biota; Paleobiology 33 351–381

    Google Scholar 

  • Brasier M D, Green O R, Jephcoat A P, Kleppe A K, Van Kranendonk M J, Lindsay J F, Steele A and Grassineau N V 2002 Questioning the evidence of Earth’s oldest fossils; Nature (London) 416 76–81

    Google Scholar 

  • Brocks J J, Logan G A, Buick, R and Summons R E 1999 Archean molecular fossils and the early rise of eukaryotes; Science 285 1033–1036

    CAS  PubMed  Google Scholar 

  • Buick R 1984 Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites?; Precambrian Res. 24 157–172

    Google Scholar 

  • Buick R 1992 The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes; Science 255 74–77

    CAS  PubMed  Google Scholar 

  • Buick R, Dunlop J S R and Groves D I 1981 Stromatolites recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia; Alcheringa 5 161–181

    Google Scholar 

  • Butterfield N J 2000 Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic-Neoproterozoic radiation of eukaryotes; Paleobiology 26 386–404

    Google Scholar 

  • Butterfield N J 2001 Paleobiology of the late Proterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, arctic Canada; Precambrian Res. 111 235–256

    CAS  Google Scholar 

  • Butterfield N J 2004 A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion; Paleobiology 30 231–252

    Google Scholar 

  • Butterfield N J 2005a Probable Proterozoic fungi; Paleobiology 31 165–182

    Google Scholar 

  • Butterfield N J 2005b Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada; Lethaia 38 155–169

    Google Scholar 

  • Butterfield N J and Chandler F W 1992 Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu bay Formation, Baffin Islands; Palaeontology 35 943–957

    Google Scholar 

  • Butterfield N J, Knoll A H and Swett K 1988 Exceptional preservation of fossils in an upper Proterozoic shale; Nature (London) 334 424–427

    CAS  Google Scholar 

  • Butterfield N J, Knoll A H and Swett K 1990 A bangiophyte red algae from the Proterozoic of Arctic Canada; Science 250 104–107

    CAS  PubMed  Google Scholar 

  • Butterfield N J, Knoll A H and Swett K 1994 Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen; Fossils Strata 34 1–84

    Google Scholar 

  • Byerly G R, Lowe D R and Walsh M M 1986 Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa; Nature (London) 319 489–491

    CAS  Google Scholar 

  • Dalton R 2002 Squaring up over ancient life; Nature (London) 417 782–784

    CAS  Google Scholar 

  • Darwin, C 1859 The origin of species (London: John Murray) pp 447

    Google Scholar 

  • Fedonkin M A and Yochelson E L 2002 Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-Grade colonial eukaryote; Smithsonian Contrib. Paleobiol. 94 1–29

    Google Scholar 

  • German T N 1990 Organic world one billion years ago (Leningrad: Nauka) pp 49

    Google Scholar 

  • Gnilovaskaya M B (ed.) 1988 Vendotaenids of the East-European Platform (Leningrad: Nauka) pp 143

    Google Scholar 

  • Golubić S and Hofmann H J 1976 Interpretation of microfossils with special reference to the Precambrian; in Fossil Algae (ed.) E Flugel (Springer-Verlag, Berlin) pp 1–14

    Google Scholar 

  • Gradestein F M, Ogg J G, Smith A G, Bleeker W and Lourens L J 2004 A new geological Time-scale with special reference to Precambrian and Neogene; Episodes 27 83–100

    Google Scholar 

  • Grant S W F, Knoll A H and Germs G J B 1991 Probable calcified metaphytes in the Proterozoic Nama Group, Namibia: origin, diagenesis and implications; J. Paleontol. 65 1–18

    CAS  PubMed  Google Scholar 

  • Green J W, Knoll A H and Swett K 1988 Microfossils from pisolites of the Upper Proterzoic Eleonore Bay Group, central East Greenland; J. Paleontol. 62 835–852

    CAS  PubMed  Google Scholar 

  • Grey K 2005 Ediacaran Palynology of Australia; Mem. Assoc. Aust. Palaeontol. 31 1–439

    Google Scholar 

  • Grey K and Williams I R 1990 Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia; Precambrian Res. 46 307–327

    Google Scholar 

  • Grotzinger J P, Watters W A and Knoll A H 2000 Calcified metazoan in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia; Paleobiology 26 334–359

    Google Scholar 

  • Han T M and Runnegar B 1992 Megascopic eukaryotic algae from 2.1-billion-year-old Negaunee Iron-Formation, Michigan; Science 257 232–235

    CAS  PubMed  Google Scholar 

  • Hofmann H J 1976 Precambrian microflora, Belcher Island, Canada: significance and systematics; J. Paleontol. 50 1040–1073

    Google Scholar 

  • Hofmann H J 2000 Archean stromatolites as Microbial Archives; in Microbial sediments (eds) R E Riding and S M Awramik (Springer-Verlag) pp 315–327

  • Hofmann H J and Chen J 1981 Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China; Can. J. Earth Sci. 18 443–447

    Google Scholar 

  • Horodyski R J 1982 Problematic bedding plane markings from the Middle Proterozoic Appekunny Argillite, belt Supergroup, north western Montana; J. Paleontol. 56 882–889

    Google Scholar 

  • Horodyski R J and Donaldson J A 1980 Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada; Precambrian Res. 11 125–159

    Google Scholar 

  • Horodyski R J and Mankiewicz C 1990 Possible late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California Am. J. Sci. 290A 149–169

    Google Scholar 

  • Hua H, Chen Z, Yuan X, Zhang L and Xiao S 2005 Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina; Geology 33 277–280

    Google Scholar 

  • Javaux E J, Knoll A H and Walter M R 2001 Morphology and ecological complexity in early eukaryotic ecosystems; Nature (London) 412 66–69

    CAS  Google Scholar 

  • Javaux E J, Knoll A H and Walter M R 2003 Recognizing and interpreting the fossils of early eukaryotes Orig. Life Evol. Biosph. 33 75–94

    CAS  PubMed  Google Scholar 

  • Kaźmierczak Józef and Barbara Kremer 2002 Thermal alteration of the Earth’s oldest fossils; Nature (London) 420 477–478

    Google Scholar 

  • Klein C, Beukes N J and Schopf J W 1987 Filamentous microfossils in the Early Proterozoic Transvaal Supergroup: their morphology, significance and Paleoenvironmental setting; Precambrian Res. 36 81–94

    Google Scholar 

  • Knoll A H 1992. The Early Evolution of Eukaryotes: A Geological Perspective; Science 256: 622-627

    CAS  PubMed  Google Scholar 

  • Knoll A H 1996 Archean and Proterozoic Paleontology; in Palynology:principles and applications vol. 1 (eds) J Jansonious and D C McGregor (American Association of Stratigrahic Palynologists Foundation) pp 51–80

  • Knoll A H and Barghoorn E S 1977 Archean microfossils showing cell division from the Swaziland System of South Africa; Science 198 396–398

    CAS  PubMed  Google Scholar 

  • Knoll A H, Barghoorn E S and Awramik S M 1978 New Microorganisms from the Aphebian Gunflint Iron Formation, Ontario; J. Paleontol. 52 976–992

    Google Scholar 

  • Knoll A H and Sergeev V N 1995 Taphonomic and Evolutionary changes across the Mesoproterozoic-Neoproterozoic Transition; Neues Jahrb. Geol. Pälaontol. Abh. 195 289–302

    CAS  PubMed  Google Scholar 

  • Knoll A H, Swett K and Mark J 1991 Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen; J. Paleontol. 65 531–570

    CAS  PubMed  Google Scholar 

  • Knoll A H, Walter M R, Narbonne G M and Christe-Blick N 2006 The Ediacaran Period: a new addition to the geologic time scale; Lethaia 39 13–30

    Google Scholar 

  • Kumar S 1995 Microfossils from the Mesoproterozoic Rohtas Formation (Vindhyan Supergroup) Katni area, central India; Precambrian Res. 72 171–184

    CAS  Google Scholar 

  • Kumas S 2001 Mesoproterozoic mega fossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India; Precambrian Res. 106 187–211

    Google Scholar 

  • Kumar S and Rai V 1992 Organic walled microfossil from the bedded black chert of the Krol Formation (Vendian), Solan area, Solan district, Himachal Pradesh, India; J. Geol. Soc. India 39 229–234

    Google Scholar 

  • Kumar S and Srivastava P 1992 Middle to Late Proterozoic microbiota from the Deoban Limestone, Garhwal Himalaya, India; Precambrian Res. 56 291–318

    Google Scholar 

  • Lanier W P 1986 Approximate growth rates of Early Proterozoic microstromatolites as deduced by biomass productivity; Palaios 1 525–542

    Google Scholar 

  • Lanier W P 1989 Interstitial and peloid microfossils from the 2.0 Ga Gunflint Formation: implications for the palaeoecology of the Gunflint stromatolites; Precambrian Res. 45 291–318

    Google Scholar 

  • Lowe D R 1980 Stromatolites 3,400-Myr old from the Archean of Western Australia; Nature (London) 284 441–443

    Google Scholar 

  • Mathur V K 2008 Ediacaran multicellular biota from Krol Group, Lesser Himalaya and its stratigraphic significance — a review; Palaeobotanist 57 53–61

    Google Scholar 

  • Maithy P K, Kumar S and Babu R 2000 Biological remains and organosedimentary structures from Iron Ore Supergroup (Archaean) Barbil area, Singhbhum, Orissa; Geol. Surv. India, Spl. Publ. 57 98–106

    Google Scholar 

  • Matz M V, Frank T M, Justin Marshall N, Widder E A and Johnsen S 2008 Giant deep-sea protist produces bilaterian-like traces; Curr. Biol. 18 1849–1854

    CAS  PubMed  Google Scholar 

  • Mayr E 1998 Two empires or three; Proc. Natl. Acad. Sci. USA 95 9720–9723

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKeegan K D, Kudryavstev A and Schopf J W 2007 Raman and ion microscopic imagery of graphitic inclusion in apatite from older than 3830 Ma Akilia Supracrustal rocks, West Greenland; Geology 28 707–710

    Google Scholar 

  • Moczydłowska M 2008 New records of late Ediacaran microbiota from Poland; Precambrian Res. 167 71–92

    Google Scholar 

  • Moczydłowska M, Vidal G and Rudavskaya V A 1993 Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia; Paleontology 36 495–521

    Google Scholar 

  • Muir M J and Grant P R 1976 Micropaleontological evidence from the Onverwacht Group, South Africa; in The early history of the Earth (ed.) B F Windley (London: Wiley) pp 595–604

    Google Scholar 

  • Naqvi S M, Venkatachala B S, Shukla M, Kumar B, Natarajan R and Sharma M 1987 Silicified cyanobacteria from the cherts of the Archaean Sandur Schist belt, Karnataka, India; J. Geol. Soc. India 29 535–539

    CAS  Google Scholar 

  • O’Neil J, Carlson R W, Francis D and Stevenson R K 2008 Neodymium-142 evidence for Hadean Mafic Crust; Science 321 1828–1831

    PubMed  Google Scholar 

  • Ourisson G, Rohmer M and Poralla K 1987 Prokaryotic hopanoid and other polyterpenoid sterol surrogates; Annu. Rev. Microbiol. 41 301–334

    CAS  PubMed  Google Scholar 

  • Peat C R, Muir M D, Plumb K A, McKirdy D M and Norvick M S 1978 Proterozoic microfossils from the Roper Group, Northern Territory, Australia; J. Aust. Geol. Geophys. 3 1–17

    Google Scholar 

  • Petrov P Y, Semikhatov M A and Sergeev V N 1995 Development of the Riphean carbonate platform and distribution of silicified microfossils: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia; Stratigr.Geol.Correlation 3 79–99

    Google Scholar 

  • Porter S and Knoll A H 2000 Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon; Paleobiology 26 360–385

    Google Scholar 

  • Prasad B and Asher R 2001 Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and lower Paleozoic sediments (Pre-Unconformity Sequence) of Ganga Basin, India; Palaeontogr. Indica 5 1–151

    Google Scholar 

  • Rasmussen B 2000 Filamentous microfosils in a 3,235-million year-old volcanogenic massive sulphide deposite; Nature (London) 405 676–679

    CAS  Google Scholar 

  • Schopf J W 1968 Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia; J. Paleontol. 42 651–688

    Google Scholar 

  • Schopf J W 1993 Microfossils of the Early Archaean Apex Chert: New Evidence of the Antiquity of Life; Science 260 640–646

    CAS  PubMed  Google Scholar 

  • Schopf J W 2004 Earth’s earliest biosphere: Status of the hunt; in The Precambrian Earth: Tempos and events (eds) P G Eriksson, W Altermann, D R Nelson, W U Mueller and O Catuneanu (Amsterdam: Elsevier) pp 516–539

    Google Scholar 

  • Schopf J W, Kudryavtsev A B, Agresti D G, Wdowiak T J and Czaja A D 2002 Laser-Raman imagery of Earth’s earliest fossils; Nature London) 416 73–76

    CAS  Google Scholar 

  • Schopf J W and Packer B M 1987 Early Archean (3.3-billion to 3.5 billion-year-old) micro-fossils from Warrawoona Group, Australia; Science 237 70–73

    CAS  PubMed  Google Scholar 

  • Schopf J W and Walter M R 1983 Archean microfossils, new evidence of ancient microbes; in Earth’s earliest biosphere: its origin and evolution (ed) J W Schopf (Princeton: Princeton University Press) pp 214–239

    Google Scholar 

  • Sergeev V N 1993 Silicified Riphean microfossils of the Anabar Uplift; Stratigr. Geol. Correlation 1 264–278

    Google Scholar 

  • Sergeev V N 1997 Mesoproterozoic Microbiotas of the Northern Hemisphere and the Meso-Neoproterozoic Transition; Proc. 30th Int. Geol Congr. 1 177–185

    Google Scholar 

  • Sergeev V N 2006 Precambrian microfossils in cherts: their paleobiology, classification and biostratigraphic usefulness (GEOS, Moscow, 2005) pp 280 (in Russian)

    Google Scholar 

  • Sergeev V N, Knoll A H and Petrov P Y 1997 Paleobiology of the Mesoproterozoic — Neoproterozoic Transition: The Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia; Precambrian Res. 85 201–239

    CAS  PubMed  Google Scholar 

  • Sergeev V N, Knoll A H and Grotzinger J P 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northeastern Siberia; Paleontol. Soc. Mem. 39 37 pp

  • Sergeev V N, Knoll A H and Zavarzin G A 1996 First three billion years of life: from prokaryotes to eukaryotes; Priroda 6 54–67 (in Russian)

    Google Scholar 

  • Sergeev V N, Sharma M and Shukla Yogmaya 2008 Mesoproterozoic silicified microbiotas of Russia and India-Characteristics and Contrasts; Palaeobotanist 53 323–358

    Google Scholar 

  • Seward A C 1931 Plant Life through the ages (Cambridge University Press) 601 pp

  • Sharma M 2006a Late Palaeoproterozoic (Statherian) carbonaceous films from the Olive Shale (Koldaha Shale), Semri Group, Vindhyan Supergroup, India; J. Palaeontol. Soc. India 51 27–35

    Google Scholar 

  • Sharma M 2006b Small-sized akinetes from the Mesoproterozoic Salkhan Limestone, Semri Group, Bihar, India; J. Palaeontol. Soc. India 51 109–118

    Google Scholar 

  • Sharma M 2006c Palaeobiology of Mesoproterozoic Salkhan Limestone, Semri Group, Rohtas, Bihar, India: Systematics and Significance; J. Earth Syst. Sci. 115 67–98

    Google Scholar 

  • Sharma M and Sergeev V N 2004 Genesis of carbonate precipitate patterns and associated microfossils in Mesoproterozoic formations of India and Russia — a comparative study; Precambrian Res. 134 317–347

    CAS  Google Scholar 

  • Sharma M and Shukla M 2004 A new Archaean stromatolites from the Chitradurga Group, Dharwar Craton, India and its significance; Palaeobotanist 53 5–16

    Google Scholar 

  • Sharma M and Shukla Y 2009a Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India; Precambrian Res. 173 105–122

    CAS  Google Scholar 

  • Sharma M and Shukla Y 2009b Megacopic carbonaceous compression fossils from Neoproterozoic Bhima basin, Karanataka, south India; J. Geol. Soc. London (submitted)

  • Shukla M, Tewari V C and Yadav V K 1986 Late Precambrian microfossils from the Deoban Limestone Formation, Lesser Himalaya; Palaeobotanist 35 347–356

    Google Scholar 

  • Srinivasan R, Shukla M, Naqvi S M, Yadav V K, Venkatachala B S, Uday Raj B and Subba Rao D V 1989 Archaean stromatolites from the Chitradurga Schist Belt, Dharwar Craton South India; Precambrian Res. 43 239–250

    Google Scholar 

  • Srivastava P 2005 Vindhyan Akinetes: An indicator of Mesoproterozoic Biosphere Evolution; Orig. Life Evol Biosph. 35 175–185

    CAS  PubMed  Google Scholar 

  • Srivastava P and Kumar S 2003 New microfossils from the Meso-Neoproterozoic Deoban Limestone, Garhwal Lesser Himalaya, India; Palaeobotanist 52 13–47

    Google Scholar 

  • Strother P K, Knoll A H and Barghoorn E S 1983 Micro-organisms from the late Precambrian Narssarssuk Formation, northwestern Greenland; Paleontology 26 1–32

    Google Scholar 

  • Summons R E, Brassell S C, Eglinton G, Evans E J, Horodyski R J, Robinson N and Ward D M 1988 Distinctive hydrocarbon bomarkers from fossiliferous sediments of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, USA; Geochim. Cosmochim. Acta 52 2625–2673

    CAS  Google Scholar 

  • Summons R E and Walter M R 1990 Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments; Am. J. Sci. 290-A 212–244

    Google Scholar 

  • Timofeev B V 1959 Ancient flora of the Baltic area and its stratigraphic significance; Tr. Vses. Neft. Nauchno-Issled. Geol. Inst. (VNIGRI) 129 1–320

    Google Scholar 

  • Tiwari M and Knoll A H 1994 Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance; J. Him. Geol. 5 193–201

    Google Scholar 

  • Towe K M 1990 Aerobic respiration in the Archaean?; Nature (London) 384 54–56

    Google Scholar 

  • Tyler S A and Barghoorn E S 1954 The occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield; Science 119 606–608

    CAS  PubMed  Google Scholar 

  • Van Zuilen M A, Lepland A and Arrhenius G 2002 Reassessing the evidence for the earliest traces of life; Nature (London) 418 627–630

    Google Scholar 

  • Venkatachala B S, Sharma M, Srinivasan R, Shukla M and Naqvi S M 1986 Bacteria from the Archaean banded iron Formation of Kudremukh region, Dharwar Craton, South India; Palaeobotanist 35 200–203

    Google Scholar 

  • Venkatachala B S, Shukla M, Sharma M, Naqvi S M, Srinivasan R and Udairaj B 1990 Archaean microbiota from the Donimalai Formation, Dharwar Supergroup, India; Precambrian Res. 47 27–34

    Google Scholar 

  • Veis A F and Vorobyeva N G 1992 Riphean and Vendian microfossils of the Anabar Massif; Izvest. Akad. Nauk Ser. Geol. 5 36–54

    Google Scholar 

  • Vidal G 1976 Late Precambrian microfossils from the Visingso beds in southern Sweden; Fossils Strata 9 1–57

    Google Scholar 

  • Vidal G 1989 Are Late Proterozoic carbonaceous megafossils metaphytic algae or bacteria?; Lethaia 22 375–379

    Google Scholar 

  • Vidal G and Ford T D 1985 Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications; Precambrian Res. 28 349–389

    Google Scholar 

  • Walsh M M and Lowe D R 1985 Filamentous microfossils from the 3500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa; Precambrian Res. 54 271–293

    Google Scholar 

  • Walter M R, Buick R and Dunlop J S R 1980 Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia; Nature (London) 284 443–445

    Google Scholar 

  • Willman S and Moczydłowska M 2008 Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigrahic correlation; Precambrian Res. 162 498–530

    CAS  Google Scholar 

  • Willman S, Moczydłowska M and Grey K 2006 Neoproterozoic (Ediacaran) diversification of acritarchs- anew record from the Murnaroo 1 drillcore, eastern Officer Basin, Australia; Rev. Palaeobot. Palynol. 139 17–39

    Google Scholar 

  • Woese C R 1987 Bacterial evolution; Microbiol. Rev. 51 221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese C R 2002 On the evolution of cells; Proc. Natl. Acad. Sci. USA 99 8742–8747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese C R, Kandler O and Wheels M L 1990 Towards a natural system of organisms:proposal for the domains Archaea, Bacteria and Eucarya; Proc. Natl. Acad. Sci. USA 87 4576–4579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S 2004 New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic; Yangtze Gorges, south China; J. Paleontol. 78 393–401

    Google Scholar 

  • Xiao S, Knoll A H, Kaufman A J, Zhang Y and Yin L 1997 Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform; Precambrian Res. 84 197–220

    CAS  Google Scholar 

  • Yan Yu-Zhong and Liu Zhi-li 1997 Tuanshanzian macroscopic algae of 1700 Ma B. P. from Tuanshanzi Formation in Jixian, China; Acta Micropalaeontol. Sin. 12 107–126

    Google Scholar 

  • Yin Leiming 1985 Microfossils of the Doushantuo Formation in the Yangtze Gorge District, western Hebei, China; Palaeontol. Cathayana 2 229–249

    Google Scholar 

  • Yuan Xunlai and Hofmann H J 1998 New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Wen’an, Guizhou Province, southern China; Alcheringa 22 189–222

    Google Scholar 

  • Yuan Xunlai, Xiao S and Taylor T N 2005 Lichen-like symbiosis 600 million years ago; Science 308 1017–1020

    CAS  PubMed  Google Scholar 

  • Zang Wenlong and Walter M R 1992 Late Proterzoic and Early Cambrian microfossils and bostratigraphy, northern Anhui and Jiangsu, central-eastern China; Precambrian Res. 57 243–323

    Google Scholar 

  • Zhang Z 1986 Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China; J. Micropaleontol. 5 9–16

    Google Scholar 

  • Zhang Z 1989 Multicellular thallophytes with differentiated tissue from Late Proterozoic phosphate rocks of South China; Precambrian Res. 28 1–18

    Google Scholar 

  • Zhou C, Brasier M D and Xue Y 2001 Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei province, South China; Palaeontology 44 1157–1178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M., Shukla, Y. The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record. J Biosci 34, 765–776 (2009). https://doi.org/10.1007/s12038-009-0065-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0065-8

Keywords

Navigation