Skip to main content
Log in

Tungstate as a synergist to phosphonate-based formulation for corrosion control of carbon steel in nearly neutral aqueous environment

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Synergistic inhibition of corrosion of carbon steel in low chloride aqueous medium using tungstate as a synergist in combination with N,N-bis(phosphonomethyl) glycine (BPMG) and zinc ions is presented. The synergistic action of tungstate has been established through the present studies. The new ternary inhibitor formulation is effective in neutral and slightly acidic as well as slightly alkaline media. Potentiodynamic polarisation studies inferred that the formulation functions as a mixed inhibitor. Impedance studies of the metal/solution interface revealed that the surface film is highly protective. Characterisation by X-ray photoelectron spectroscopy (XPS) of the surface film formed in presence of the inhibitor revealed the presence of iron, phosphorus, nitrogen, oxygen, carbon, zinc and tungsten in the surface film. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of iron oxides/hydroxides, zinc hydroxide, heteropolynuclear complex [Fe(III), Zn(II)-BPMG] and WO3. Reflection absorption FTIR spectroscopic studies also supported the presence of these compounds in the surface film. Morphological features of the metal surface studied in the absence and presence of the inhibitor by scanning electron microscopy (SEM) are also presented. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunasekaran G, Palaniswamy N, Appa Rao B V and Muralidharan V S 1996 Proc. Indian Acad. Sci. (Chem. Sci.) 108 399

    CAS  Google Scholar 

  2. Gonzalez Y, Lafont M C, Pebere N and Moran F 1996 J. Appl. Electrochem. 26 1259

    Article  CAS  Google Scholar 

  3. Shaban A, Kalman E and Biczo I 1993 Corros. Sci. 35 1463

    Article  CAS  Google Scholar 

  4. Felhosi I, Keresztes Zs, Karman F H, Mohai M, Bertoti I and Kalman E 1999 J. Electrochem. Soc. 146 961

    Article  CAS  Google Scholar 

  5. Pech-Canul M A and Chi-Canul L P 1999 Corrosion 55 948

    Article  CAS  Google Scholar 

  6. Telegdi J, Shaglouf M M, Shaban A, Karman F H, Betroti I, Mohai M and Kalman E 2001 Electrochim. Acta 46 3791

    Article  CAS  Google Scholar 

  7. Ochoa N, Baril G, Moran F and Pebere N 2002 J. Appl. Electrochem. 32 497

    Article  CAS  Google Scholar 

  8. Pech-Canul M A and Bartolo-Perez P 2004 Surf. Coat. Technol. 184 133

    Article  CAS  Google Scholar 

  9. Appa Rao B V, Srinivasa Rao S and Venkateswara Rao M 2008 Corros. Eng. Sci. Technol. 43 46

    Article  Google Scholar 

  10. Westerback S, Rajan K S and Martell A E 1965 J. Am. Chem. Soc. 87 2567

    Article  CAS  Google Scholar 

  11. Sawada K, Duan W, Ono M and Satoh K 2000 J. Chem. Soc., Dalton Trans. 919

  12. Lumsden J B and Szklarska-Smiralowska Z 1978 Corrosion 34 167

    Google Scholar 

  13. Mu G, Li X, Qu Q and Zhou J 2006 Corros. Sci. 48 445

    Article  CAS  Google Scholar 

  14. Qu Q, Li L, Bai W, Jiang S and Ding Z 2009 Corros. Sci. 51 2423

    Article  CAS  Google Scholar 

  15. ASTM Standard G31-72 1999 (2004) Standard practice for laboratory immersion corrosion testing of metals, ASTM International, West Conshohocken, PA 2006 DOI: 10.1520/G0031-72R04.

    Google Scholar 

  16. Elachouri E, Hajji M S, Salem M, Kertit S, Aride J, Coudert R and Essassi E 1996 Corrosion 52 103

    Article  CAS  Google Scholar 

  17. Aravio-Torre J and Arevalo A 1951 Inst. Espam. Oceanogr. 46 27

    Google Scholar 

  18. Morad M S 2000 Corros. Sci. 42 1307

    Article  CAS  Google Scholar 

  19. Gunasekaran G and Chauhan L R 2004 Electrochim. Acta 49 4387

    Article  CAS  Google Scholar 

  20. Alagta A, Felhosi I, Telegdi J, Bertoti I and Kalman E 2007 Corros. Sci. 49 2754

    Article  CAS  Google Scholar 

  21. Wang C T, Chen S H, Ma H Y and Wang N X 2002 J. Serb. Chem. Soc. 67 685

    Article  CAS  Google Scholar 

  22. Kalman E, Karman F H, Cserny I, Kover L, Telegdi J and Varga D 1994 Electrochim. Acta 39 1179

    Article  CAS  Google Scholar 

  23. McIntyre N S and Zetaruk D G 1977 Anal. Chem. 49 1521

    Article  CAS  Google Scholar 

  24. Maroie S, Savy M and Verbist J J 1979 Inorg. Chem. 18 2560

    Article  CAS  Google Scholar 

  25. Asami K, Hashimoto K and Shimodaira S 1976 Corros. Sci. 16 35

    Article  CAS  Google Scholar 

  26. Moulder J F, Stickle W F, Sobol P E and Bamben K D 1995 Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, USA, Physical Electronics

  27. Nakayama N 2000 Corros. Sci. 42 1897

    Article  CAS  Google Scholar 

  28. Koudelka M, Sanchez J and Augustynski J 1982 J. Electrochem. Soc. 129 1186

    Article  CAS  Google Scholar 

  29. El Azhar M, Traisnel M, Mernari B, Gengembre L, Bentiss F and Lagrenee M 2002 Appl. Surf. Sci. 185 197

    Article  Google Scholar 

  30. Meneguzzi A, Ferreira C A, Pham M C, Delamar M and Lacaze P C 1999 Electrochim. Acta 44 2149

    Article  CAS  Google Scholar 

  31. Aramaki K and Shimura T 2003 Corros. Sci. 45 2639

    Article  CAS  Google Scholar 

  32. Fang J L, Li Y, Ye X R, Wang Z W and Liu Q 1993 Corrosion 49 266

    Article  CAS  Google Scholar 

  33. Aramaki K 2004 Corros. Sci. 46 1565

    Article  CAS  Google Scholar 

  34. Sastri V S 1998 Corrosion inhibitors-principles and applications (England: John Wiley & Sons)

    Google Scholar 

  35. Sastri V S and Packwood R H 1987 Werkstoffe and Korrosion 38 77

    Article  CAS  Google Scholar 

  36. Amar H, Braisaz T, Villemin D and Moreau B 2008 Mater. Chem. Phys. 110 1

    Article  CAS  Google Scholar 

  37. To X H, Pebere N, Pelaprat N, Boutevin B and Hervaud Y 1997 Corros. Sci. 39 1925

    Article  CAS  Google Scholar 

  38. Carter R O, Gierczak C A and Dickie R A 1986 Appl. Spectrosc. 40 649

    Article  CAS  Google Scholar 

  39. Sekine I and Hirakawa Y 1986 Corrosion 42 272

    Article  CAS  Google Scholar 

  40. Gunasekaran G, Palaniswamy N, Appa Rao B V and Muralidharan V S 1997 Electrochim. Acta 42 1427

    Article  CAS  Google Scholar 

  41. Koltypin Yu, Nikitenko S I and Gedanken A 2002 J. Mater. Chem. 12 1107

    Article  CAS  Google Scholar 

  42. Shi Yu and Gan Moog Chow 2004 J. Mater. Chem. 14 2781

    Article  CAS  Google Scholar 

  43. Bellamy L J 1968 Advances in infrared group frequencies (Great Britain, The Chaucer Press Limited)

    Google Scholar 

  44. Pak J-J, Bahgat M and Paek M-K 2009 J. Alloy Compd. 477 357

    Article  CAS  Google Scholar 

  45. Deluchat V, Bollinger J-C, Serpaud B and Caullet C 1997 Talanta 44 897

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Appa Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appa Rao, B.V., Venkateswara Rao, M., Srinivasa Rao, S. et al. Tungstate as a synergist to phosphonate-based formulation for corrosion control of carbon steel in nearly neutral aqueous environment. J Chem Sci 122, 639–649 (2010). https://doi.org/10.1007/s12039-010-0099-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-010-0099-3

Keywords

Navigation