Skip to main content
Log in

Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We report here the highly sensitive and selective electrochemical determination of 3,4-dihydroxyphenylacetic acid (DOPAC), one of the dopamine metabolites in the presence of important interferents ascorbic acid (AA) and uric acid (UA) using an ultrathin electropolymerized film of 5-amino-1,3,4-thiadiazole-2-thiol (p-ATT) modified glassy carbon (GC) electrode in 0.20M phosphate buffer solution (pH5.0). The bare GC electrode fails to resolve the oxidation peaks of AA, DOPAC and UA in a mixture. Further, the oxidation peak potentials of them were shifted to more positive potential with decreased peak currents in the subsequent cycles. On the other hand, the p-ATT modified electrode not only separated the voltammetric signals of AA, DOPAC and UA but also enhanced their peak currents. The amperometric current response was increased linearly with increasing DOPAC concentration in the range of 4.0×10 − 8 to 1.0×10 − 5 M and the detection limit was found to be 150pM (S/N = 3).

5-amino-1,3,4-thiadiazole-2-thiol was electropolymerized on glassy carbon electrode and utilised for selective determination of 3,4-dihydroxyphenylacetic acid in the presence of important interferents ascorbic and uric acids. The modified electrode showed excellent selectivity towards 3,4-dihydroxyphenylacetic acid even in the presence of 50-folds excess of ascorbic and uric acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson G M, Riddle M A, Hoder E L, Feibel F C, Shaywitz B A, Cohen D J 1988 J. Neurol. Neurosurg. Psychiatry 51 1100

    Article  CAS  Google Scholar 

  2. Thiffault C, Langston J W and Monte D A D 2003 Exp. Neuro. 18 173

    Article  Google Scholar 

  3. D’Angio M and Scatton B 1989 Neurosci. Lett. 96 223

    Article  Google Scholar 

  4. Chase T N 1980 Neurochemical alterations in Parkinson’s disease (ed) J H Wood, Neurobiology of cerebrospinal fluid (New York: Plenum), pp. 207

    Chapter  Google Scholar 

  5. LeWitt P A 1993 Adv. Neurol. 60 544

    CAS  Google Scholar 

  6. Thogi H, Abe T, Saheki M, Yamazaki K and Murata T 1997 J. Neural. Transm. 104 441

    Article  Google Scholar 

  7. Wightman R M, May L J and Michael A C 1988 Anal. Chem. 60 769A

    Google Scholar 

  8. Stamford J A, Palij P, Davidson C and Trout S J 1995 Bioelectrochem. Bioenerg. 38 289

    Article  CAS  Google Scholar 

  9. Valentini F, Orlanducci S, Terranova M L, Amine A and Palleschi G 2004 Sens. Actuators B 100 117

    Article  Google Scholar 

  10. Salimi A, MamKhezri H and Hallaj R 2006 Talanta 70 823

    Article  CAS  Google Scholar 

  11. Roy P R, Saha M S, Okajima T, Park S G, Fujishima A and Ohsaka T 2004 Electroanalysis 16 1777

    Article  CAS  Google Scholar 

  12. Raj C R and Ohsaka T 2002 Electroanalysis 14 679

    Article  CAS  Google Scholar 

  13. Raj C R and Behera S 2005 J. Electroanal. Chem. 581 61

    Article  CAS  Google Scholar 

  14. Raj C R and Ohsaka T 2001 Chem. Lett. 30 670

    Article  Google Scholar 

  15. Kalimuthu P and John S A 2008 J. Electroanal. Chem. 617 164

    Article  CAS  Google Scholar 

  16. Maldonado S, Morin S, and Stevenson K J 2006 Analyst 131 262

    Article  CAS  Google Scholar 

  17. Wang J, Li M, Shi Z, Li N and Gu Z 2001 Electrochim. Acta 47 651

    Article  CAS  Google Scholar 

  18. Liu A, Honma I and Zhou H 2005 Electrochem. Commun. 7 233

    Article  CAS  Google Scholar 

  19. Curulli A, Valentini F, Padeletti G, Viticoli M, Caschera D and Palleschi G 2005 Sens. Actuators B 111–112 441

    Article  Google Scholar 

  20. Yeung P K F, Buckley S J, Pedder S C J and Dingemanse J 1996 J. Pharm. Sci. 85 451

    Article  CAS  Google Scholar 

  21. Adcock J L, Barnett N W, Costin J W, Francis P S, and Lewis S W 2005 Talanta 67 585

    Article  CAS  Google Scholar 

  22. Drujan B D, Alvarez N and Borges J M D 1966 Anal. Biochem. 15 8

    Article  CAS  Google Scholar 

  23. Weisel F A 1975 Neurosci. Lett. 1 219

    Article  Google Scholar 

  24. Kalimuthu P and John S A 2009 Electrochem. Commun. 11 367

    Article  CAS  Google Scholar 

  25. Kalimuthu P and John S A 2009 Bioelectrochemistry 77 13

    Article  CAS  Google Scholar 

  26. Kalimuthu P and John S A 2009 Biosens. Bioelectron. 24 3575

    Article  CAS  Google Scholar 

  27. Kalimuthu P and John S A 2009 Anal. Chim. Acta 647 97

    Article  CAS  Google Scholar 

  28. Kalimuthu P and John S A 2009 Electrochem. Commun. 11 1065

    Article  CAS  Google Scholar 

  29. Giz M J, Duong B and Tao N J 1999 J. Electroanal. Chem. 465 72

    Article  CAS  Google Scholar 

  30. Zhao H, Zhang Y and Yuan Z 2001 Anal. Chim. Acta 441 117

    Article  CAS  Google Scholar 

  31. Crespi F, Martin K F and Marsden C A 1988 Neuroscience 27 885

    Article  CAS  Google Scholar 

  32. Liu A, Honma I and Zhou H 2005 Biosens. Bioelectron. 21 809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S ABRAHAM JOHN.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

KALIMUTHU, P., JOHN, S.A. Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode. J Chem Sci 123, 349–355 (2011). https://doi.org/10.1007/s12039-011-0086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0086-3

Keywords

Navigation