Skip to main content
Log in

Size-dependent melting of nanoparticles: Hundred years of thermodynamic model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different nanostructures such as nanowires, prism-shaped nanoparticles, etc. The model has also been modified to understand the melting of supported nanoparticles and superheating of embedded nanoparticles. In this article, we have reviewed the melting behaviour of nanostructures reported in the literature since 1909.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Pawlow, Z. Phys. Chem. 65, 1 (1909); 65, 545 (1909)

    Google Scholar 

  2. P Pawlow, Z. Phys. Chem. 74, 562 (1910)

    Google Scholar 

  3. M Takagi, J. Phys. Soc. Jpn. 9, 359 (1954)

    Article  ADS  Google Scholar 

  4. L S Palatnik and Yu F Konnik, Phys. Metals Metal. 9, 48 (1960)

    Google Scholar 

  5. N T Gladkich, R Niedermayer and K Spiegel, Phys. Status Solidi 15, 181 (1966)

    Article  Google Scholar 

  6. C R M Wronski, Br. J. Appl. Phys. 18, 1731 (1967)

    Article  ADS  Google Scholar 

  7. J F Pocza, A Barna and P B Barna, J. Vacuum. Sci. Technol. 6, 472 (1969)

    Article  ADS  Google Scholar 

  8. R P Berman and A E Curzon, Can. J. Phys. 52, 923 (1974)

    ADS  Google Scholar 

  9. B T Boiko, A T Pugachev and V M Bratsykhin, Sov. Phys. Solid State 10, 2832 (1969)

    Google Scholar 

  10. J R Sambles, Proc. R. Soc. London A324, 339 (1971)

    ADS  Google Scholar 

  11. T Ben-David, Y Lereah, G Deutscher, R Kofman and P Cheyssac, Philos. Mag. A71, 1135 (1995)

    ADS  Google Scholar 

  12. A N Goldstein, C M Echer and A P Alivisatos, Science 256, 1425 (1992)

    Article  ADS  Google Scholar 

  13. A N Goldstein, Appl. Phys. A62, 33 (1996)

    ADS  Google Scholar 

  14. T Castro, R Reifenberger, E Choi and R P Andres, Phys. Rev. B42, 8548 (1990)

    ADS  Google Scholar 

  15. Ph Buffat and J-P Borel, Phys. Rev. A13, 2287 (1976)

    ADS  Google Scholar 

  16. K Dick, T Dhanasekaran, Z Zhang and D Meisel, J. Am. Chem. Soc. 124, 2312 (2002)

    Article  Google Scholar 

  17. S L Lai, J Y Guo, V Petrova, G Ramanath and L H Allen, Phys. Rev. Lett. 77, 99 (1996)

    Article  ADS  Google Scholar 

  18. Y Oshima and K Takayanagi, Z. Phys. D27, 287 (1993)

    ADS  Google Scholar 

  19. T Bachels, H-J Gunterodt and R Schafer, Phys. Rev. Lett. 85, 1250 (2000)

    Article  ADS  Google Scholar 

  20. E A Olson, M Yu Efremov, M Zhang, Z Zhang and L H Allen, J. Appl. Phys. 97, 034304 (2005)

  21. T P Martin, U Naher, H Schaber and U Zimmermann, J. Chem. Phys. 100, 2322 (1994)

    Article  ADS  Google Scholar 

  22. V P Skripov, V P Koverda and V N Skokov, Phys. Status Solidi A66, 109 (1981)

    Google Scholar 

  23. Y Lereah, G Deutscher, P Cheyssac and R Kofman, Europhys. Lett. 12, 709 (1990)

    Article  ADS  Google Scholar 

  24. R Kofman, P Cheyssac, A Aouaj, Y Lereah, G Deutscher, T Ben-David, H M Penisson and A Bourret, Surf. Sci. 303, 231 (1994)

    Article  ADS  Google Scholar 

  25. E Sondergard, R Kofman, P Cheyssac, F Celestini, T Ben-David and Y Lereah, Surf. Sci. 388, L1115 (1997)

    Article  Google Scholar 

  26. M Zhang, M Yu Efremov, F Schiettekatte, E A Olson, A T Kwan, S L Lai, T Wisleder, J E Greene and L H Allen, Phys. Rev. B62, 10548 (2000)

    ADS  Google Scholar 

  27. R Kofman, P Cheyssac, R Garrigos, Y Lereah and G Deutscher, Z. Phys. D20, 267 (1991)

    ADS  Google Scholar 

  28. M Dippel, A Maier, V Gimple, H Wider, W E Evenson, R L Rasera and G Schatz, Phys. Rev. Lett. 87, 095505 (2001)

    Google Scholar 

  29. X W Wang, G T Fei, K Zheng, Z Jin and L D Zhang, Appl. Phys. Lett. 88, 173114 (2006)

  30. K J Hanszen, Z. Phys. 157, 523 (1960)

    Article  ADS  Google Scholar 

  31. J-P Borel, Surf. Sci. 106, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  32. P R Couchman and W A Jesser, Nature (London) 269, 481 (1977)

    Article  ADS  Google Scholar 

  33. S C Hendy, Nanotechnol. 18, 175703 (2007)

    Article  ADS  Google Scholar 

  34. D Sar, P Nayak and K K Nanda, Phys. Lett. A372, 4627 (2008)

    ADS  Google Scholar 

  35. G K Goswami and K K Nanda, Appl. Phys. Lett. 91, 196101 (2007)

    Google Scholar 

  36. O Gülseren, F Ercolessi and E Tosatti, Phys. Rev. B51, 7377 (1995)

    ADS  Google Scholar 

  37. L J Lewis, P Jensen and J-L Barrat, Phys. Rev. B56, 2248 (1997)

    ADS  Google Scholar 

  38. R R Vanfleet and J M Mochel, Surf. Sci. 341, 40 (1995)

    Article  ADS  Google Scholar 

  39. H Sakai, Surf. Sci. 351, 285 (1996), ibid. 348, 387 (1996)

    Article  ADS  Google Scholar 

  40. B Pluis, D Frenkel and J F van der Veen, Surf. Sci. 239, 282 (1990)

    Article  ADS  Google Scholar 

  41. K K Nanda, S N Sahu and S N Behera, Phys. Rev. A66, 013208 (2002)

    Google Scholar 

  42. K K Nanda, Chem. Phys. Lett. 419, 195 (2006); ibid., Eur. J. Phys. 19, 471 (1998)

    Article  ADS  Google Scholar 

  43. M Wautelet, J. Phys. D24, 343 (1991)

    ADS  Google Scholar 

  44. M Wautelet, Phys. Lett. A246, 341 (1998)

    ADS  Google Scholar 

  45. M Wautelet, Eur. Phys. J. Appl. Phys. 29, 51 (2005)

    Article  ADS  Google Scholar 

  46. M Wautelet, Nanotechnol. 17, 2008 (2006)

    Article  ADS  Google Scholar 

  47. G Guisbiers, O Van Overschelde and M Wautelet, Acta Mater. 55, 3541 (2007)

    Article  Google Scholar 

  48. A S Shirinyan, A M Gusak and M Wautelet, Acta Mater. 53, 5025 (2005)

    Article  Google Scholar 

  49. C Q Sun, H L Bai, S Li, B K Tay and E Y Jiang, Acta Mater. 52, 501 (2004)

    Article  Google Scholar 

  50. C Q Sun, Y Shi C M Li, S Li and T C Au Yeung, Phys. Rev. B73, 075408 (2006)

    Google Scholar 

  51. C Q Sun, Y Wang and B K Tay, J. Phys. Chem. B106, 10701 (2002)

  52. Q Jiang, Z Zhang and J C Li, Chem. Phys. Lett. 322, 549 (2000)

    Article  ADS  Google Scholar 

  53. M Zhao and Q Jiang, Solid State Commun. 130, 37 (2004)

    Article  ADS  Google Scholar 

  54. Q Jiang, S Zhang and M Zhao, Mater. Chem. Phys. 82, 225 (2003)

    Article  Google Scholar 

  55. Q Jiang, J C Li and B Q Chi, Chem. Phys. Lett. 366, 551 (2002)

    Article  ADS  Google Scholar 

  56. Z Zhang, J C Li and Q Jiang, J. Phys. D: Appl. Phys. 33, 2653 (2000)

    Article  ADS  Google Scholar 

  57. Q Jiang, H Y Tong, D T Hsu, K Okuyama and F G Shy, Thin Solid Films 312, 357 (1998)

    Article  ADS  Google Scholar 

  58. W H Qi, M P Wang, M Zhou, X Q Shen and X F Zhang, J. Phys. Chem. Sol. 67, 851 (2006)

    Article  ADS  Google Scholar 

  59. W H Qi and M P Wang, J. Nanoparticle Res. 7, 51 (2005)

    Article  Google Scholar 

  60. W H Qi and M P Wang, Mater. Chem. Phys. 88, 280 (2004)

    Article  Google Scholar 

  61. C Kan, G Wang, X Zhu, C Li and B Cao, Appl. Phys. Lett. 88, 071904 (2006)

  62. X Chen, J Zhao, Q Sun, F Liu, G Wang and X C Shen, Phys. Status Solidi. B193, 355 (1996)

    Article  Google Scholar 

  63. D K Yu, R Q Zhang and S T Lee, Phys. Rev. B65, 245417 (2002)

  64. H H Farrell and C D Van Siclen, J. Vac. Sci. Technol. B25, 1441 (2007)

    Google Scholar 

  65. L Miao, V R Bhethanabotla and B Joseph, Phys. Rev. B72, 134109 (2005)

    Google Scholar 

  66. F Ercolessi, W Androni and E Tosatti, Phys. Rev. Lett. 66, 911 (1991)

    Article  ADS  Google Scholar 

  67. A Jiang, N Awasthi, A N Kolmogorov, W Setyawan, A Borjesson, K Bolton, A R Harutyunyan and S Curtarolo, Phys. Rev. B75, 205426 (2007)

    Google Scholar 

  68. A Nakanishi and T Matsubara, J. Phys. Soc. Jpn 39, 1415 (1975)

    Article  ADS  Google Scholar 

  69. K Hoshino and S A Shimamura, Philos. Mag. A40, 137 (1979)

    ADS  Google Scholar 

  70. V B Storozhev, Surf. Sci. 397, 170 (1998)

    Article  ADS  Google Scholar 

  71. F Ding, A Rosen, S Curtarolo and K Bolton, Appl. Phys. Lett. 88, 133110 (2006)

    Google Scholar 

  72. L Joonho, T Toshihiro, L Junggoo and M Hirotato, Calphad 31, 105 (2007)

    Article  Google Scholar 

  73. H Saka, Y Nishikawa and T Imura, Philos. Mag. A57, 895 (1988)

    ADS  Google Scholar 

  74. H W Sheng, K Lu and E Ma, Nanostruct. Mater. 10, 865 (1998)

    Article  Google Scholar 

  75. L Grabaek et al, Phys Rev. Lett. 64, 934 (1990)

    Article  ADS  Google Scholar 

  76. K Chattopadhyay and R Goswami, Prog. Mater. Sci. 42, 287 (1997)

    Article  Google Scholar 

  77. R Goswami and K Chattopadhyay, Acta Mater. 52, 5503 (2004)

    Article  Google Scholar 

  78. H W Sheng, G Ren, L M Peng, Z Q Hu and K Lu, Philos. Mag. Lett. 73, 179 (1996)

    Article  ADS  Google Scholar 

  79. H W Sheng, G Ren, L M Peng, Z Q Hu and K Lu, J. Mater. Res. 12, 119 (1997)

    Article  ADS  Google Scholar 

  80. T Ohashi, K Kuroda and H Saka, Philos. Mag. B65, 1041 (1992)

    Google Scholar 

  81. F G Shi, J. Mater. Res. 9, 1307 (1994)

    Article  ADS  Google Scholar 

  82. Q Jiang, Z Zhang and J C Li, Chem. Phys. Lett. 322, 549 (2000)

    Article  ADS  Google Scholar 

  83. Z Zhang, Z C Li and Q Jiang, J. Phys. D33, 2653 (2000)

    ADS  Google Scholar 

  84. L Zhang, Z H Jin, L H Zhang, M L Sui and K Lu, Phys. Rev. Lett. 85, 1484 (2000)

    Article  ADS  Google Scholar 

  85. Q Xu et al, Phys. Rev. Lett. 97, 155701 (2006)

  86. A A Shvartsburg and M F Jarrold, Phys. Rev. Lett. 85, 2530 (2000)

    Article  ADS  Google Scholar 

  87. G A Breaux, R C Benirschke, T Sugai, B S Kinnear and M F Jarrold, Phys. Rev. Lett. 91, 215508 (2003)

  88. K Joshi, S Krishnamurty and D G Kanhere, Phys. Rev. Lett. 96, 135703 (2006)

    Google Scholar 

  89. S Chacko, Kavita Joshi, D G Kanhere and S A Blundell, Phys. Rev. Lett. 92, 133506 (2004)

    Google Scholar 

  90. M Schmidt, R Kusche, B V Issendorff and H Haberland, Nature (London) 393, 238 (1998)

    Article  ADS  Google Scholar 

  91. G A Breaux, C M Neal, B Cao and M F Jarrold, Phys. Rev. Lett. 94, 173401 (2005)

  92. D J Wales and R S Berry, J. Chem. Phys. 92, 4473 (1990)

    Article  ADS  Google Scholar 

  93. A Augado and J M Lopez, Phys. Rev. Lett. 94, 233401 (2005)

    Google Scholar 

  94. K Morishige and K Kawano, J. Phys. Chem. B104, 2894 (2000)

    Google Scholar 

  95. E Molz, A P Y Wong, M H W Chan and J R Beamish, Phys. Rev. B48, 5741 (1993)

    ADS  Google Scholar 

  96. J L Tell and H J Maris, Phys. Rev. B28, 5122 (1983)

    ADS  Google Scholar 

  97. F Cellestini, R J-M Pellenq, P Bordarier and B Rousseau, Z. Phys. D37, 49 (1996)

    ADS  Google Scholar 

  98. A Rytkonen, S Valkealahti and M Manninen, J. Chem. Phys. 106, 1888 (1997)

    Article  ADS  Google Scholar 

  99. C J Rossouw and S E Donnelly, Phys. Rev. Lett. 55, 2960 (1985)

    Article  ADS  Google Scholar 

  100. J H Evans and D J Mazey, J. Phys. F15, L1 (1985)

    Article  ADS  Google Scholar 

  101. K F Peters, Y-W Chung and J B Cohen, Appl. Phys. Lett. 71, 2391 (1997)

    Article  ADS  Google Scholar 

  102. B Pluis, D Frenkel and J F Van der Veen, Surf. Sci. 239, 282 (1990)

    Article  ADS  Google Scholar 

  103. B Pluis, A W Denier van der Gon, J W M Frenken and J F van der Veen, Phys. Rev. Lett. 59, 2678 (1987)

    Article  ADS  Google Scholar 

  104. A Hoss, M Nold, P von Blackenhagen and O Moyer, Phys. Rev. B45, 8714 (1992)

    ADS  Google Scholar 

  105. S G J Mochrie, D M Zehner, B M Ocko and D Gibbs, Phys. Rev. Lett. 64, 2925 (1990)

    Article  ADS  Google Scholar 

  106. P Carnevali, F Ercolessi and E Tosatti, Phys. Rev. B36, 6701 (1987)

    ADS  Google Scholar 

  107. C Kan, G Wang, X Zhu, C Li and B Cao, Appl. Phys. Lett. 88, 071904 (2006)

    Article  ADS  Google Scholar 

  108. T S Rahman, Z Tian and J E Black, Surf. Sci. 374, 9 (1997)

    Article  ADS  Google Scholar 

  109. K K Nanda, A Maisels, F E Kruis and B Rellinghaus, Europhys. Lett. 80, 56003 (2007)

    Google Scholar 

  110. Y-H Wen, Z-Z Zhu, R Zhu and G-F Shao, Physica E25, 47 (2004)

    ADS  Google Scholar 

  111. B Wang, G Wang, X Chen and J Zhao, Phys. Rev. B67, 193403 (2003)

  112. Y Qi, T Cagin, W L Johnson and W A Goddard III, J. Chem. Phys. 115, 385 (2001)

    Article  ADS  Google Scholar 

  113. L Hui, F Pederiva, B L Wang, J L Wang and G H Wang, Appl. Phys. Lett. 86, 011913 (2005)

    Google Scholar 

  114. R Chitra and S Yashonath, J. Phys. Chem. B101, 389 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Nanda.

Additional information

This article is dedicated to Indian Institute of Science which is also celebrating its centenary this year.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanda, K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana - J Phys 72, 617–628 (2009). https://doi.org/10.1007/s12043-009-0055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0055-2

Keywords

PACS Nos

Navigation