Skip to main content
Log in

Model-free adaptive sliding mode controller design for generalized projective synchronization of the fractional-order chaotic system via radial basis function neural networks

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master–slave system and to overcome the bad effects of the external disturbances on the generalized projective synchronization, the radial basis function neural networks are used to approach the packaged unknown master system and the packaged unknown slave system (including the external disturbances). Consequently, based on the slide mode technology and the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized projective synchronization error. The main contribution of this paper is that a control strategy is provided for the generalized projective synchronization between two entirely unknown fractional-order chaotic systems subject to the unknown external disturbances, and the proposed control strategy only requires that the master system has the same fractional orders as the slave system. Moreover, the proposed method allows us to achieve all kinds of generalized projective chaos synchronizations by turning the user-defined parameters onto the desired values. Simulation results show the effectiveness of the proposed method and the robustness of the controlled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D Ingman and J Suzdalnitsky, J. Vib. Acoust. 124, 642 (2002)

    Article  Google Scholar 

  2. M Ichise, Y Nagayanagi and T Kojima, J. Electroanal. Chem. 33, 253 (1971)

    Article  Google Scholar 

  3. H H Sun, A A Abdelwahad and B Onaral, IEEE T. Automat. Contr. 29, 441 (1984)

    Article  Google Scholar 

  4. R C Koeller, Acta Mech. 191, 125 (2007)

    Article  Google Scholar 

  5. S Dadras and H R Momeni, Physica A 389, 2434 (2010)

    Article  ADS  Google Scholar 

  6. Y J Yang, C C Chen, P Y Lai and C K Chan, Phys. Rev. E 92, 030701 (2015)

    Article  ADS  Google Scholar 

  7. S Bhalekar and V Daftardar-Gejji, Commun. Nonlinear Sci. Numer. Simul. 15, 3536 (2010)

    Article  ADS  Google Scholar 

  8. L Pan, W Zhou, L Zhou and K Sun, Commun. Nonlinear Sci. Numer. Simul. 16, 2628 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. D Cafagna and G Grassi, Nonlinear Dyn. 68, 117 (2012)

    Article  Google Scholar 

  10. X Wang, X Zhang and C Ma, Nonlinear Dyn. 69, 511 (2012)

    Article  Google Scholar 

  11. D Liu and X M Yan, Acta Phys. Sin. 58, 3747 (2009)

    Google Scholar 

  12. A E Matouk, Commun. Nonlinear. Sci. Numer. Simul. 16, 975 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. S Wang and Y Yu, Chin. Phys. Lett. 29, 020505 (2012)

    Article  ADS  Google Scholar 

  14. L Wang et al, Chin. Phys. B 23, 100501 (2014)

    Article  ADS  Google Scholar 

  15. Y Yu and H Li, Nonlinear Anal. 11, 2456 (2010)

    Article  Google Scholar 

  16. D Sun, X Shao and G Feng, IEEE Trans. Control Systems Technol. 15, 306 (2007)

    Article  Google Scholar 

  17. R Martínez-Guerra, W Yu and E Cisneros-Saldana, Chaos, Solitons and Fractals 36, 1141 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. R Aguilar-López and R Martı, Chaos, Solitons and Fractals 38, 531 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. P Faradja and G Qi, Robustness based comparison between a sliding mode controller and a model free controller with the approach of synchronization of nonlinear systems, 15th International Conference on Control, Automation and Systems (Busan, Korea, Oct. 13–16, 2015)

  20. Y Li, Y Q Chen and I Podlubny, Comput. Math. Appl. 59, 1810 (2010)

    Article  MathSciNet  Google Scholar 

  21. J K Liu, Intelligence control (Beijing Publishing House of Electronic Industory, 2005)

  22. E J Hartman, J D Keeler and J M Kowalski, Neural Comput. 2, 210 (1990)

    Article  Google Scholar 

  23. J Park and I W Sandberg, Neural Comput. 3, 246 (1990)

    Article  Google Scholar 

  24. M Anthony and P L Bartlett, Neural network learning (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  25. G Feng, Robot. Auto. Syst. 15(3), 199 (1995)

    Article  Google Scholar 

  26. J J E Slotine and W Li, Applied nonlinear control (Prentice-Hall, Englewood Cliffs, 1991)

    MATH  Google Scholar 

  27. K Konishi, M Hirai and H Kokame, Phys. Lett. A 245, 511 (1998)

    Article  ADS  Google Scholar 

  28. I Grigorenko and E Grigorenko, Phys. Rev. Lett. 91, 034101 (2003)

    Article  ADS  Google Scholar 

  29. C Li and G Chen, Chaos, Solitons and Fractals 22, 549 (2004)

    Article  ADS  Google Scholar 

  30. W Deng, J. Comput. Phys. 227, 1510 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their valuable comments and suggestions, which have led to the improved presentation of this paper. This work was partially supported by the Projects of Department of Science and Technology in Hebei Province, China (Grant No. 15213401), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. QN2014096) and the Langfang Teachers University Foundation, China (Grant No. LSLZ201404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Wang.

Appendix: Dynamic equations of the fractional-order chaotic systems

Appendix: Dynamic equations of the fractional-order chaotic systems

The fractional-order chaotic Lorenz system [28] is described by the following equation:

$$\begin{aligned} \left\{ {\begin{array}{l} D_t ^{q_1 }x_1 =10(x_2 -x_1 ), \\ D_t ^{q_2 }x_2 =4x_1 +5x_2 -x_1 x_3 \\ D_t ^{q_3 }x_3 =x_2 x_3 -8/3x_3, \\ \end{array}}, \right. \quad (q_1 ,q_2 ,q_3 )=(0.98,0.95,0.97). \end{aligned}$$
(A.1)

Through numerical simulations, one can find that system (A.1) will exhibit chaotic behaviours when \((q_1 ,q_2 ,q_3 )=(0.98,0.95,0.97)\), which is shown in figure 6.

Fig. 6
figure 6

Chaotic attractor and projections of the fractional-order Lorenz chaotic system when \((q_1 ,q_2 ,q_3 )=(0.98,0.95,0.97)\).

The fractional-order chaotic Chen system [29] is described by the following equation:

$$\begin{aligned} \left\{ {\begin{array}{l} D_t ^{q_1 }x_1 =10(x_2 -x_1 ), \\ D_t ^{q_2 }x_2 =40x_1 -10x_1 x_3 \\ D_t ^{q_3 }x_3 =4x_1 ^{2}-2.5x_3, \\ \end{array}}, \right. \quad (q_1 ,q_2 ,q_3 )=(0.98,0.95,0.97). \end{aligned}$$
(A.2)

Through numerical simulations, one can find that system (A.2) will exhibit chaotic behaviours when \((q_1 ,q_2 ,q_3 )=(0.98,0.95,0.97)\), which is shown in figure 7.

Fig. 7
figure 7

Chaotic attractor and projections of the fractional-order Chen chaotic system when \((q_1 ,q_2 ,q_3 )=(0.98,0.95,0.97)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.M. Model-free adaptive sliding mode controller design for generalized projective synchronization of the fractional-order chaotic system via radial basis function neural networks. Pramana - J Phys 89, 38 (2017). https://doi.org/10.1007/s12043-017-1434-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1434-8

Keywords

PACS Nos

Navigation