Skip to main content
Log in

Multiple vibrational resonance and antiresonance in a coupled anharmonic oscillator under monochromatic excitation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We examine the existence of multiple vibrational resonance (VR) and antiresonance in two coupled overdamped anharmonic oscillators where each one is individually driven by a monochromatic sinusoidal signal with widely separated frequencies (\(\Omega \gg \omega \)). In contemporary VR, superposed periodic waves are adopted to infer resonance, but herein we employ non-superposed periodic waves to acquire the elevated response. We study two coupling schemes namely, unidirectional and bidirectional, to substantiate the occurrence of multiple VR and antiresonance. Such occurrences have been shown and the results were ascertained with supportive numerical and experimental outcomes. We also illustrate the effect of coupling strength on the observed phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev. Mod. Phys.  70, 223 (1998)

    Article  ADS  Google Scholar 

  2. A Kenfack and K P Singh, Phys. Rev. E  82, 046224 (2010)

    Article  ADS  Google Scholar 

  3. I Blekhman and V S Sorokin, Nonlinear Dyn.  1 (2018)

  4. R Benzi, A Sutera and A Vulpiani, J. Phys. A  14, L453 (1981)

    Article  ADS  Google Scholar 

  5. I Y Lee, X L Liu, B Kosko and C W Zhou, Nano Lett.  3, 1683 (2003)

    Article  ADS  Google Scholar 

  6. J J Collins, T T Imhoff and P Grigg, J. Neurophysiol.  76, 642 (1996)

    Article  Google Scholar 

  7. J K Douglass, L Wilkens, E Pantazelou and F Moss, Nature (London)  365, 337 (1993)

    Article  ADS  Google Scholar 

  8. J E Levin and J P Miller, Nature (London)  380, 165 (1996)

    Article  ADS  Google Scholar 

  9. P S Landa and P V E McClintock, J. Phys. A  33, L433 (2000)

    Article  ADS  Google Scholar 

  10. A Zaikin, J García-Ojalvo, L Schimansky-Geier and J Kurths, Phys. Rev. Lett.  88, 010601 (2001)

    Article  Google Scholar 

  11. E Ullner, A Zaikin, J Garcià-Ojalvo, R Bàscones and J Kurths, Phys. Lett. A  312, 348 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. A Daza, A Wagemakers, S Rajasekar and M A F Sanjuán, Commun. Nonlinear Sci. Numer. Simul.  18, 411 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. J H Yang and B Liu, Chaos  20, 033124 (2010)

    Article  ADS  Google Scholar 

  14. S Rajasekar, J Used, A Wagemakers and M A F Sanjuàn, Commun. Nonlinear Sci. Numer. Simul.  17, 3435 (2012)

    Article  ADS  Google Scholar 

  15. A Jeevarekha and P Philominathan, Pramana – J. Phys.  86(5), 1031 (2016)

    Article  ADS  Google Scholar 

  16. S Ghosh and D S Ray, Phys. Rev. E  88, 042904 (2013)

    Article  ADS  Google Scholar 

  17. L M Pecora and T L Carroll, Phys. Rev. Lett.  64, 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. A Prasad, M Dhamala, B M Adhikari and R Ramaswamy, Phys. Rev. E  81, 027201 (2010)

    Article  ADS  Google Scholar 

  19. M Daniel, R Mirollo, H Strogatz and A Wiley, Phys. Rev. Lett.  101, 129902 (2008)

    Article  ADS  Google Scholar 

  20. Y Wang, D T Chik and Z D Wang, Phys. Rev. E  61(1), 740 (2000)

    Article  ADS  Google Scholar 

  21. A Lovera, B Gallinet, P Nordlander and O J Martin, ACS Nano  7(5), 4527 (2013)

    Article  Google Scholar 

  22. B Deng, J Wang and X Wei, Chaos  19(1), 013117 (2009)

    Article  ADS  Google Scholar 

  23. C Yao and M Zhan, Phys. Rev. E  81, 061129 (2010)

    Article  ADS  Google Scholar 

  24. V M Gandhimathi, S Rajasekar and J Kurths, Phys. Lett. A  360, 279 (2006)

    Article  ADS  Google Scholar 

  25. V M Gandhimathi and S Rajasekar, Phys. Scr.  76(6), 693 (2007)

    Article  ADS  Google Scholar 

  26. A Jeevarekha, M Santhiah and P Philominathan, Pramana – J. Phys.  83(4), 493 (2014)

    Article  ADS  Google Scholar 

  27. R Jothimurugan, K Thamilmaran, S Rajasekar and M A F Sanjuán, Nonlinear Dyn.  83(4), 1803 (2016)

    Article  Google Scholar 

  28. S Jeyakumari, V Chinnathambi, S Rajasekar and M A F Sanjuan, Phys. Rev. E  80(4), 046608 (2009)

    Article  ADS  Google Scholar 

  29. X X Wu, C Yao and J Shuai, Sci. Rep.  5, 7684 (2015)

    Article  Google Scholar 

  30. Z Agur, Comput. Math. Methods Med.  1(3), 237 (1998)

    Google Scholar 

  31. W Dámbrogio and A Fregolent, J. Sound Vib.  236(2), 227 (2000)

    Article  ADS  Google Scholar 

  32. B Lysyansky, O V Popovych and P A Tass, J. Neural Eng.  8(3), 036019 (2011)

    Article  ADS  Google Scholar 

  33. H Zhang, H Chang and W Yuan, Microsyst. Nanoeng. 3, 17023 (2017)

    Article  Google Scholar 

  34. G Baxter, J McKane and B Tarlie, Phys. Rev. E  71, 011106 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. B Razavi, Fundamentals of microelectronics (Wiley, New York, 2008)

    Google Scholar 

  36. M B Elowitz and S Leibler, Nature  403, 335 (2000)

    Article  ADS  Google Scholar 

  37. J P Baltanás, L López, I I Blechman, P S Landa, A Zaikin, J Kurths and M A F Sanjuán, Phys. Rev. E  67, 066119 (2003)

    Article  ADS  Google Scholar 

  38. R Jothimurugan, K Thamilmaran, S Rajasekar and M A F Sanjuán, Int. J. Bifurc. Chaos  23, 1350189 (2013)

    Article  Google Scholar 

  39. K L Babcock and R M Westervelt, Physica D  28, 305 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  40. F Ci-Jun and L Xian-Bin, Chin. Phys. Lett.  29, 050504 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

A Jeevarekha thanks the Department of Science and Technology for the support provided in the form of DST INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Philominathan.

Appendices

Appendix A. Unidirectionally coupled oscillators—Theoretical approach

We have made an attempt to provide an empirical solution to the considered models. While solving eq. (1), the solution for \(\dot{x}\) is determined to be

$$\begin{aligned} x=\frac{g\cos (\Omega t-\theta _1)}{\sqrt{(1+\Omega ^2)}}, \end{aligned}$$
(A1)

where \(\theta _1=\tan ^{-1}(\Omega )\). Upon substituting the value of x, the standard method of variable decomposition \(y(t)=Y(t,\omega t)+\psi (t,\Omega t)\) is applied to eq. (2), where \(Y(t,\omega t)\) and \(\psi (t,\Omega t)\) correspond to slow and fast moving components of the response, respectively [40]. Employing the decomposition method and averaging the fast moving components, one gets

$$\begin{aligned} \dot{Y}= & {} Y(1-3\bar{\psi } ^2)- Y^3 +f\cos (\omega t), \end{aligned}$$
(A2)
$$\begin{aligned} \dot{\psi }= & {} g_1\cos (\Omega t) \end{aligned}$$
(A3)

with \(g_1={\gamma g}/({\sqrt{1+\Omega ^2}})\). Considering the value of \(\bar{\psi } ^2\) from eqs (A3), (A2) becomes

$$\begin{aligned} \dot{Y}-Yc_1+Y^3=f\cos (\omega t), \end{aligned}$$
(A4)

where \(c_1=1-({3g_1^2}/{2\Omega ^2})\) and it is quite evident from the above equation that the shape of the potential depends on the value of g, \(\gamma \) and \(\Omega \). When \(c_1 >0\), a double-well potential is obtained with its maxima and minima located at \(Y_1^*=0\) and \(Y_{2,3}^*=\pm \sqrt{c_1}\), respectively. On the other hand, when \(c_1 <0\), the shape of the potential becomes a single well with its minima located at \(Y_1^*=0\). Also, from eq. (A4), it is evident that the effective parameters of the system get affected due to resonance.

The critical value of g at which the resonance is observed can be deduced from the following relation:

$$\begin{aligned} g_{\max }=\sqrt{\frac{2\Omega ^2(\Omega ^2 +1)}{3\gamma ^2}}. \end{aligned}$$
(A5)

As the oscillators are one-way coupled, f and \(\omega \) do not affect \(g_{\max }\). As previously mentioned, if \(g<\sqrt{({2\Omega ^2(\Omega ^2 +1)})/{3\gamma ^2}}\), there exist two minima in \({\pm }\sqrt{c_1}\) and the deviation from the minima \(Y_{2,3}^*\) can be calculated by substituting \(Z=Y-Y_{2,3}\) in eq. (A4). Upon substitution of z and using the linearisation, one gets a modified equation as

$$\begin{aligned} \dot{z}=s_1z+f\cos \omega t, \end{aligned}$$
(A6)

where \(s_1=2c_1\). From the above equation, the response amplitude and the phase shift are analytically calculated to be

$$\begin{aligned} Q= & {} \frac{1}{\sqrt{\omega ^2+4c_1 ^2}}, \end{aligned}$$
(A7)
$$\begin{aligned} \theta _2= & {} \tan ^{-1} \frac{\omega }{s_1}. \end{aligned}$$
(A8)

Else when \(g>\sqrt{({2\Omega ^2(\Omega ^2 +1)})/{3\gamma ^2}}\), there exists only one minimum at \(Y_1^*\) and the response amplitude and phase shift now become

$$\begin{aligned} Q= & {} \frac{1}{\sqrt{\omega ^2+c_1 ^2}}, \end{aligned}$$
(A9)
$$\begin{aligned} \theta _2= & {} \tan ^{-1} \frac{\omega }{c_1}. \end{aligned}$$
(A10)

The response amplitude is calculated using eq. (A9) when \(\omega =0.1\), \(\Omega =0.5\), \(f=0.05\) and the outcomes are compared in figure 12.

Fig. 12
figure 12

Comparison of numerical and analytical values of Q for fixed values of \(f=0.05\), \(\omega =0.1\) and \(\Omega =0.5\) when the coupling strength \(\gamma =1.0.\)

Appendix B. Mutually coupled oscillators—Theoretical approach

Further, as the process of obtaining analytical solution for mutually coupled oscillators is tedious, a highly approximated method of solution is proposed here. It starts with the addition of eqs (8) and (9) as

$$\begin{aligned} \dot{x}+\dot{y}=(x+y)-(x^3+y^3)+f\cos \omega t+g\cos \Omega t. \end{aligned}$$
(B1)

Replacing \(x=X(t,\omega t)+\psi (t, \Omega t)\) and \(y=Y(t,\omega t)+\psi (t, \Omega t)\) and on resolving slow and fast components, we obtain

$$\begin{aligned}&\dot{X}+\dot{Y}=(X+Y)[1-3\bar{\psi }^2]-(X^3+Y^3)+f\cos \omega t, \end{aligned}$$
(B2)
$$\begin{aligned}&\dot{\psi }=\frac{g\cos \Omega t}{2}. \end{aligned}$$
(B3)

After substituting the value of \(\psi \) using eq. (B3) and by considering \(X+Y=A\), the linearised form of equation will be obtained as \(\dot{A}=c_1A+f\cos \omega t\). Then the solution A is determined to be

$$\begin{aligned} A=\frac{f\cos (\omega t-\phi )}{\sqrt{c_1 ^2+\omega ^2}}, \end{aligned}$$
(B4)

where \(c_1=[({3g^2}/{4\Omega ^2}) -1]\) and \(\phi =\tan ^{-1}({\omega }/{c_1})\).

Fig. 13
figure 13

Variation of Q with g for \(\omega =0.1\), \(\Omega =1.0\), \(\gamma =1.0\) and \(f=0.001\). Theoretical output has been appropriately scaled down for better fit.

Similarly, on subtracting eqs (8) and (9), we get

$$\begin{aligned} \dot{x}-\dot{y}= & {} (x-y)-(x^3-y^3)+2\gamma (x-y)\nonumber \\&+\,f\cos \omega t-g\cos \Omega t. \end{aligned}$$
(B5)

Again by replacing \(x=X+\psi \) and \(y=Y-\psi \) and on resolving slow and fast components, we obtain

$$\begin{aligned}&\dot{X}-\dot{Y}=(X-Y)[1-3\bar{\psi } ^2+2\gamma ]\nonumber \\&\qquad \qquad \quad \ -\,(X^3-Y^3)+f\cos \omega t, \end{aligned}$$
(B6)
$$\begin{aligned}&\dot{\psi }=-\,\frac{g\cos \Omega t}{2}. \end{aligned}$$
(B7)

After substituting the value of \(\psi \) using eq. (B7) and by having \(X-Y=B\), the solution becomes

$$\begin{aligned} B=\frac{f\cos (\omega t-\phi _1)}{\sqrt{(c_2 ^2+\omega ^2)}}, \end{aligned}$$
(B8)

where \(c_2=({3g^2}/{4\Omega ^2})-1-2\gamma \) and \(\phi _1=\tan ^{-1}({\omega }/{c_2})\). On solving A and B, the response amplitude of the coupled system is found to be

$$\begin{aligned} Q= \frac{\kappa \cos (\omega t-\theta )}{2}, \end{aligned}$$
(B9)

where

$$\begin{aligned} \kappa= & {} \sqrt{\alpha ^2+\beta ^2+2\alpha \beta \cos (\phi -\phi _1)},\\ \theta= & {} \tan ^{-1}\frac{\alpha \sin \phi + \beta \sin \phi _1}{\alpha \cos \phi +\beta \cos \phi _1}. \end{aligned}$$

The values of \(\alpha \) and \(\beta \) are \({1}/({\sqrt{c_1^2+\omega ^2}})\) and \({1}/({\sqrt{c_2^2+\omega ^2}})\), respectively. The fitness of the theoretical model to numerical outcomes is shown in figure 13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asir, M.P., Jeevarekha, A. & Philominathan, P. Multiple vibrational resonance and antiresonance in a coupled anharmonic oscillator under monochromatic excitation. Pramana - J Phys 93, 43 (2019). https://doi.org/10.1007/s12043-019-1802-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1802-7

Keywords

PACS Nos

Navigation