Skip to main content
Log in

Theoretical investigation of structural, electronic and thermoelectric properties of \(p{-}n\) type \(\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}\) system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Based on the density functional theory and the Boltzmann transport theory, the thermoelectric properties of \(\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}\) solid solution with \(x= 0.25, 0.5 \hbox { and } 075\) were investigated. The calculated structural parameters were in good agreement with the previous work and the mechanical and dynamical stabilities were confirmed. The electronic band structure computed using the Tran-Blaha-modified Becke and Johnson (TB-mBJ) exchange potential indicated that the band gap can be tuned by the alloy effect. We combined first-principles calculations and the semiclassical Boltzmann transport theory by considering the electronic transport in the \(\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}\) solid solution to determine the effect of varying the Sn composition on the thermoelectric performance. Our results have shown exceptionally high electrical conductivity for \({\hbox {Mg}}_{2}\hbox {Sn}\) and higher Seebeck coefficient for \(\hbox {Mg}_{2}\hbox {Si}\). The highest figure of merit (ZT) was predicted for \(\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}\) solid solution with \(x = 0.5\) where ZT has reached 0.55 with carrier concentration charge \(n = 10^{20}\hbox { cm}^{-3}\) (p-type doping) at intermediate temperatures. Consequently, the alloying system with p-type doping may improve the thermoelectric properties compared to the \(\hbox {Mg}_{2}\hbox {Si}\) and \(\hbox {Mg}_{2}\hbox {Sn}\) pristine compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K Benmouiza and A Cheknane, Energ. Convers. Manage. 75, 561 (2013)

    Article  Google Scholar 

  2. M B A Bashir, S M Said, M F M Sabri, D A Shnawah and M H Elsheikh, Renew. Sust. Energ. Rev. 37, 569 (2014)

    Article  Google Scholar 

  3. Ö C Yelgel, J. Alloy Compd 691, 151 (2017)

    Article  Google Scholar 

  4. X Zhang and L-D Zhao, J. Materiomics 1, 92 (2015)

    Article  Google Scholar 

  5. R Nasiraei, M Fadavieslam and H Azimi-Juybari, Pramana – J. Phys. 87: 30 (2016)

    Article  ADS  Google Scholar 

  6. L Chaput, J Bourgeois, A Prytuliak, M M Koza and H Scherrer, Phys. Rev. B 91, 064304 (2015)

    Article  ADS  Google Scholar 

  7. Ö C Yelgel and G Srivastava, Phys. Rev. B 85, 125207 (2012)

    Article  ADS  Google Scholar 

  8. T M Tritt, Ann. Rev. Mater. Res. 41, 433 (2011)

    Article  ADS  Google Scholar 

  9. M Yaghobi and F A Larijani, Pramana – J. Phys. 84, 155 (2015)

    Article  ADS  Google Scholar 

  10. P Boulet and M-C Record, J. Chem. Phys. 135, 234702 (2011)

    Article  ADS  Google Scholar 

  11. S W Finefrock, H Yang, H Fang and Y Wu, Annu. Rev. Chem. Biomol. Eng. 6, 247 (2015)

    Article  Google Scholar 

  12. L Yang, Z G Chen, M S Dargusch and J Zou, Adv. Energy Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  13. G Zhang, B Kirk, L A Jauregui, H Yang, X Xu, Y P Chen and Y Wu, Nano Lett. 12, 56 (2011)

    Article  ADS  Google Scholar 

  14. O Yamashita and S Tomiyoshi, Jpn J. Appl. Phys. 42, 492 (2003)

    Article  ADS  Google Scholar 

  15. Z Dughaish, Physica B 322, 205 (2002)

    Article  ADS  Google Scholar 

  16. V Zaitsev, M Fedorov, E Gurieva, I Eremin, P Konstantinov, A Y Samunin and M Vedernikov, Phys. Rev. B 74, 045207 (2006)

    Article  ADS  Google Scholar 

  17. N V Morozova, S V Ovsyannikov, I V Korobeinikov, A E Karkin, K-i Takarabe, Y Mori, S Nakamura and V V Shchennikov, J. Appl. Phys. 115, 213705 (2014)

    Article  ADS  Google Scholar 

  18. Z Liu, M Watanabe and M Hanabusa, Thin Solid Films, 381, 262 (2001)

    Article  ADS  Google Scholar 

  19. C Li, Y Wu, H Li and X Liu, J. Alloy Compd 477, 212 (2009)

    Article  Google Scholar 

  20. H Gao, T Zhu, X Liu, L Chen and X Zhao, J. Mater. Chem. 21, 5933 (2011)

    Article  Google Scholar 

  21. P Blaha, An augmented plane wave\(+\)local orbitals program for calculating crystal properties (2001)

  22. R Godby, M Schlüter and L Sham, Phys. Rev. B 37, 10159 (1988)

    Article  ADS  Google Scholar 

  23. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  24. H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. A Togo, L Chaput and I Tanaka, Phys. Rev. B 91, 094306 (2015)

    Article  ADS  Google Scholar 

  26. G K Madsen and D J Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  27. A Reshak, J. Appl. Phys. 117, 225104 (2015)

    Article  ADS  Google Scholar 

  28. D Wang, L Tang, M Long and Z Shuai, J. Chem. Phys. 131, 224704 (2009)

    Article  ADS  Google Scholar 

  29. X Tan, W Liu, H Liu, J Shi, X Tang and C Uher, Phys. Rev. B 85, 205212 (2012)

    Article  ADS  Google Scholar 

  30. L Davis, W Whitten and G Danielson, J. Phys. Chem. Solids 28, 439 (1967)

    Article  ADS  Google Scholar 

  31. K Mun Wong, S Alay-e-Abbas, Y Fang, A Shaukat and Y Lei, J. Appl. Phys. 114, 034901 (2013)

    Article  ADS  Google Scholar 

  32. R Song, T Aizawa and J Sun, Mater. Sci. Eng. B 136, 111 (2007)

    Article  Google Scholar 

  33. H Zhao, J Sui, Z Tang, Y Lan, Q Jie, D Kraemer, K McEnaney, A Guloy, G Chen and Z Ren, Nano Energy 7, 97 (2014)

    Article  Google Scholar 

  34. K Kutorasiński, J Tobola and S Kaprzyk, Phys. Rev. B 87, 195205 (2013)

    Article  ADS  Google Scholar 

  35. W Liu, X Tan, K Yin, H Liu, X Tang, J Shi, Q Zhang and C Uher, Phys. Rev. Lett. 108, 166601 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Laboratoire Physique des Materiaux (LPM), University of Laghouat, where the calculations for this work has been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Marfoua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marfoua, B., Lagoun, B., Lidjici, H. et al. Theoretical investigation of structural, electronic and thermoelectric properties of \(p{-}n\) type \(\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}\) system. Pramana - J Phys 94, 6 (2020). https://doi.org/10.1007/s12043-019-1862-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1862-8

Keywords

PACS No

Navigation