Skip to main content

Advertisement

Log in

Genetic algorithms in supply chain management: A critical analysis of the literature

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Genetic algorithms (GAs) are perhaps the oldest and most frequently used search techniques for dealing with complex and intricate real-life problems that are otherwise difficult to solve by the traditional methods. The present article provides an extensive literature review of the application of GA on supply chain management (SCM). SCM consists of several intricate processes and each process is equally important for maintaining a successful supply chain. In this paper, eight processes (where each process has a set of sub-processes) as given by Council of SCM Professionals (CSCMF) are considered. The idea is to review the application of GA on these aspects and to provide the readers a detailed study in this area. The authors have considered more than 220 papers covering a span of nearly two decades for this study. The analysis is shown in detail with the help of graphs and tables. It is expected that such an extensive study will encourage and motivate the fellow researchers working in related area; to identify the gaps and to come up with innovative ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Hadavandi E, Shavandia H and Ghanbarib A 2011 An improved sales forecasting approach by the integration of genetic fuzzy systems and data clustering: Case study of printed circuit board. Expert Syst. Appl. 38: 9392–9399

    Article  Google Scholar 

  2. Pal S K and Ghosh A 2004 Soft computing data mining. Inform. Sci. 163(1): 1–3

    Article  MathSciNet  Google Scholar 

  3. Furuhashi T, Roy R, Chawdhry P 1999 Advances in soft computing: Engineering design and manufacturing. Berlin: Springer

    Google Scholar 

  4. Jeong B, Junga H S and Parkb N K 2002 A computerized causal forecasting system using genetic algorithms in supply chain management. J. Syst. Softw. 60: 223–237

    Article  Google Scholar 

  5. Falkenauer E and Bouffouix S 1991 A genetic algorithm for job shop. In: Proceedings of IEEE International Conference on Robotics and Automation, 1991, pp. 824–829

    Google Scholar 

  6. Chang P, Yao M, Huang S and Chen C 2006 A genetic algorithm for solving a fuzzy economic lot-size scheduling problem. Int. J. Prod. Econ. 102(2): 265–288

    Article  Google Scholar 

  7. Pourakbar M, Farahani R Z and Asgari N 2007 A joint economic lot-size model for an integrated supply network using genetic algorithm. Appl. Math. Comput. 189(1): 583–596

    MathSciNet  MATH  Google Scholar 

  8. Chi H, Ersoy O K, Moskowitz H and Ward J 2007 Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms. Eur. J. Oper. Res. 180(1): 174–193

    Article  MATH  Google Scholar 

  9. Jauhar S K and Pant M 2015 Genetic algorithms, a nature-inspired tool: Review of applications in supply chain management. In: Proceedings of Fourth International Conference on Soft Computing for Problem Solving, pp. 71–86. India: Springer

  10. Holland J H 1992 Genetic algorithms. Sci. Am. 267(1): 66–72

    Article  Google Scholar 

  11. Forrest S 1996 Genetic algorithms. ACM Comput. Surv. (CSUR) 28(1): 77–80

    Article  MathSciNet  Google Scholar 

  12. Grefenstette J J 1986 Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1): 122–128

    Article  Google Scholar 

  13. Mitchell M, Forrest S and Holland J H 1992 The royal road for genetic algorithms: Fitness landscapes and GA performance. In: F J Varela and P Bourgine (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT Press/Bradford Books

    Google Scholar 

  14. Koza J R 1990 Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Stanford University Computer Science Department technical report STAN-CS-90-1314

  15. Schaffer J D, Caruana R A, Eshelman L J and Das R 1989 A study of control parameters affecting online performance of genetic algorithms for function optimization. In: Proceedings of the Third International Conference on Genetic Algorithms, pp 51–60, Morgan Kaufmann Publishers Inc

  16. De Jong K 1990 Genetic algorithm based learning. In: Kondratoff Y, Michalski R S (eds.) Machine learning: An artificial intelligence approach. San Mateo, CA: Morgan Kaufmann

    Google Scholar 

  17. Back T, Hammel U and Schwefel H P 1997 Evolutionary computation: Comments on the history and current state. IEEE Trans. Evolut. Comput. 1(1): 3–17

    Article  Google Scholar 

  18. Davis L (Ed) 1991 Handbook of genetic algorithms, vol. 115. New York: Van Nostrand Reinhold

    Google Scholar 

  19. Jauhar S K and Pant M 2013 Recent trends in supply chain management: A soft computing approach. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 465–478. India: Springer

  20. Christopher M (2005) Logistics and supply chain management: Creating value-adding networks. New York City: Pearson education

    Google Scholar 

  21. Harrison A and Hoek R I 2005 Logistics management and strategy. New York City: Pearson Education

    Google Scholar 

  22. Ko M, Tiwari A and Mehnen J A 2010 Review of soft computing applications in supply chain management. Appl. Soft Comput. 10: 661–674

    Article  Google Scholar 

  23. Douglas M, Lambert and Terrance L P 2001 Supply chain metrics. Int. J. Logist. Manag. 12(1): 1–19

    Article  Google Scholar 

  24. Verwijmeren M, Vlist P and Donselaar K 1996 Networked inventory management I formation systems: Materializing supply chain management. Int. J. Phys. Distrib. Logist. Manag. 26(6) 16–31

    Article  Google Scholar 

  25. Chan F T, Chung S H and Wadhwa S 2004 A heuristic methodology for order distribution in a demand driven collaborative supply chain. Int. J. Prod. Res. 42(1): 1–19

    Article  MATH  Google Scholar 

  26. Chan F T and Chung S H 2004 A multi-criterion genetic algorithm for order distribution in a demand driven supply chain. Int. J. Comput. Integr. Manuf. 17(4): 339–351

    Article  Google Scholar 

  27. Nachiappan S P and Jawahar N 2007 A genetic algorithm for optimal operating parameters of VMI system in a two echelon supply chain. Eur. J. Oper. Res. 182(3): 1433–1452

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu M and Hsu Y 2008 Design of BOM configuration for reducing spare parts logistic costs. Expert Syst. Appl. 34(4): 2417–2423

    Article  MathSciNet  Google Scholar 

  29. Pasandideh S H R, Niaki S T A and Yeganeh J A 2010 A parameter-tuned genetic algorithm for multi-product economic production quantity model with space constraint, discrete delivery orders and shortage. Adv. Eng. Softw. 41: 306–314

    Article  MATH  Google Scholar 

  30. Li M J, Chen D S, Cheng S Y, Wang F, Li Y, Zhou Y and Lang J L 2010 Optimizing emission inventory for chemical transport models by using genetic algorithm. Atmos. Env. 44: 3926–3934

    Article  Google Scholar 

  31. Lin K P, Chang P T, Hung K C and Pai P F 2010 A simulation of vendor managed inventory dynamics using fuzzy arithmetic operations with genetic algorithms. Expert Syst. Appl. 37: 2571–2579

    Article  Google Scholar 

  32. Pasandideh S H R, Niaki S T A and Nia A R 2011 A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Syst. Appl. 38: 2708–2716

    Article  Google Scholar 

  33. Pasandideh S H R, Niaki S T A and Tokhmehchi N 2011 A parameter-tuned genetic algorithm to optimize two-echelon continuous review inventory systems. Expert Syst. Appl. 38: 11708–11714

    Article  Google Scholar 

  34. Taleizadeh A A and Cárdenas-Barrón L E 2013 Hybrid metaheuristics algorithms for inventory management problems. In: Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance, pp. 312–356. Hershey, PA: IGI Global

    Chapter  Google Scholar 

  35. Taleizadeh A A, Niaki S T A, Aryanezhad M B and Shafii N 2013 A hybrid method of fuzzy simulation and genetic algorithm to optimize constrained inventory control systems with stochastic replenishments and fuzzy demand. Inform. Sci. 220: 425–441

    Article  Google Scholar 

  36. Das D, Kar M B, Roy A and Kar S 2013 Two-warehouse production inventory model for a deteriorating item with time-varying demand and shortages: A genetic algorithm with varying population size approach. Optim. Eng. 1–19. doi:10.1007/s11081-013-9223-9

  37. Radhakrishnan P and Jayanthi N 2013 Application of genetic algorithm to supply chain inventory optimization. J. Contemp. Res. Manag. 5(1): 27–42. http://psgim.ac.in/journals/index.php/jcrm/article/view/92

  38. Sadok A, Teghem J and Chabcoub H 2013 Grouping genetic algorithms for a bi–objective inventory routing problem. Int. J. Multicrit. Decis. Mak. 3(2): 256–276

    Article  Google Scholar 

  39. Zhang H, Deng Y, Chan F T and Zhang X 2013 A modified multi-criterion optimization genetic algorithm for order distribution in collaborative supply chain. Appl. Math. Modell. 37(14): 7855–7864

    Article  MathSciNet  Google Scholar 

  40. Sivakumar P, Ganesh K, Punnniyamoorthy M and Koh S C 2013 Genetic algorithm for inventory levels and routing structure optimization in two stage supply chain. Int. J. Inform. Syst. Supply Chain Manag. (IJISSCM) 6(2): 33–49

  41. Jana D K, Maity K, Das B and Roy T K 2013 A fuzzy simulation via contractive mapping genetic algorithm approach to an imprecise production inventory model under volume flexibility. J. Simul. 7(2): 90–100

    Article  Google Scholar 

  42. Pasandideh S H R, Niaki S T A and Far M H 2013 Optimization of vendor managed inventory of multiproduct EPQ model with multiple constraints using genetic algorithm. Int. J. Adv. Manuf. Technol. 1–12. doi:10.1007/s00170-013-5476-x

  43. Cho D W, Lee Y H, Lee T Y and Gen M 2013 An adaptive genetic algorithm for the time dependent inventory routing problem. J. Intell. Manuf. 1–18. doi:10.1007/s10845-012-0727-5

  44. Jana D K, Maity K and Roy T K 2013 Multi-objective imperfect production inventory model in fuzzy rough environment via genetic algorithm. Int. J. Oper. Res. 18(4): 365–385

    Article  MathSciNet  Google Scholar 

  45. Saracoglu I, Topaloglu S and Keskinturk T 2014 A genetic algorithm approach for multi-product multi-period continuous review inventory models. Expert Syst. Appl. 41(18): 8189–8202

    Article  Google Scholar 

  46. Maiti A K, Maiti M K and Maiti M 2014 An EOQ model of an item with imprecise seasonal time via genetic algorithm. Int. J. Oper. Res. 19(3): 358–384

    Article  MathSciNet  MATH  Google Scholar 

  47. Pasandideh S H R, Niaki S T A and Far M H 2014 Optimization of vendor managed inventory of multiproduct EPQ model with multiple constraints using genetic algorithm. Int. J. Adv. Manuf. Technol. 71(1–4): 365–376

    Article  Google Scholar 

  48. Jana D K, Maity K, Maiti M and Roy T K 2014 A multiobjective multi-item inventory control problem in fuzzy-rough environment using soft computing techniques. Adv. Decis. Sci. 2014: 617989. doi:10.1155/2014/617989

    MathSciNet  MATH  Google Scholar 

  49. Diabat A 2014 Hybrid algorithm for a vendor managed inventory system in a two-echelon supply chain. Eur. J. Oper. Res. 238(1): 114–121

    Article  MathSciNet  MATH  Google Scholar 

  50. Sadeghi J, Sadeghi S and Niaki S T A 2014 A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-II with tuned parameters. Comput. Oper. Res. 41: 53–64

    Article  MathSciNet  Google Scholar 

  51. Nia A R, Far M H and Niaki S T A 2015 A hybrid genetic and imperialist competitive algorithm for green vendor managed inventory of multi-item multi-constraint EOQ model under shortage. Appl. Soft Comput. 30: 353–364

    Article  Google Scholar 

  52. Chan F T S, Tibrewal R K, Prakash A and Tiwari M K 2015 A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229(1): 157–171

    Article  Google Scholar 

  53. Sadeghi J and Niaki S T A 2015 Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory model with trapezoidal fuzzy demand. Appl. Soft Comput. 30: 567–576

    Article  Google Scholar 

  54. Arabzad S M, Ghorbani M and Tavakkoli-Moghaddam R 2015 An evolutionary algorithm for a new multi-objective location-inventory model in a distribution network with transportation modes and third-party logistics providers. Int. J. Prod. Res. 53(4): 1038–1050

    Article  Google Scholar 

  55. Braunscheidel M J and Suresh N C 2009 The organizational antecedents of a firm’s supply chain agility for risk mitigation and response. J. Oper. Manag. 27: 119–140

    Article  Google Scholar 

  56. Han C and Damrongwongsiri M 2005 Stochastic modeling of a two-echelon multiple sourcing supply chain system with genetic algorithm. J. Manuf. Technol. Manag. 16(1): 87–108

    Article  Google Scholar 

  57. Moon C, Kim J and Hur S 2002 Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Comput. Ind. Eng. 43(1–2):331–349

    Article  Google Scholar 

  58. Moon C, Lee Y H, Jeong C S and Yun Y 2008 Integrated process planning and scheduling in a supply chain. Comput. Ind. Eng. 54(4): 1048–1061

    Article  Google Scholar 

  59. Huin S F, Luong L H S and Abhary K 2003 Knowledge-based tool for planning of enterprise resources in ASEAN SMEs. Robot. Comput. Integr. Manuf. 19(5): 409–414

    Article  Google Scholar 

  60. Huang G Q, Zhang X Y and Liang L 2005 Towards integrated optimal configuration of platform products, manufacturing processes, and supply chains. J. Oper. Manag. 23(3–4) 267–290

    Article  Google Scholar 

  61. Nasab M K and Konstantaras I 2012 A random search heuristic for a multi-objective production planning. Comput. Ind. Eng. 62: 479–490

    Article  Google Scholar 

  62. Candido M A B, Khator S K and Barcia R M 1998 A genetic algorithm based procedure for more realistic job shop scheduling problems. Int. J. Prod. Res. 36(13): 3437–3457

    Article  MATH  Google Scholar 

  63. Maraghy H, Patel V and Abdallah IB 2000 Scheduling of manufacturing systems under dual-resource constraints using genetic algorithms. J. Manuf. Syst. 19(3): 186–201

    Article  Google Scholar 

  64. Xie J and Dong J 2002 Heuristic genetic algorithms for general capacitated lot-sizing problems. Comput. Math. Appl. 44 (1–2): 263–276

    Article  MathSciNet  MATH  Google Scholar 

  65. Ossipov P 2005 Heuristic optimization of sequence of customer orders. Appl. Math. Comput. 162(3): 1303–1313

    MathSciNet  MATH  Google Scholar 

  66. Chan F T, Chung S H and Wadhwa S 2005 A hybrid genetic algorithm for production and distribution. Omega 33(4): 345–355

    Article  Google Scholar 

  67. Chan F T, Chung S H and Chan P L Y 2005 An adaptive genetic algorithm with dominated genes for distributed scheduling problems. Expert Syst. Appl. 29(2): 364–371

    Article  Google Scholar 

  68. Chan F T and Chung S H 2005 Multicriterion genetic optimization for due date assigned distribution network problems. Decis. Support Syst. 39(4): 661–675

    Article  Google Scholar 

  69. Chan F T S, Wong T C and Chan L Y 2005 A genetic algorithm-based approach to machine assignment problem. Int. J. Prod. Econ. Res. 43(12): 2451–2472

    Article  MATH  Google Scholar 

  70. Kampf M and Kochel P 2006 Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items. Int. J. Prod. Econ. 104(1): 191–200

    Article  Google Scholar 

  71. Chan F T S, Wong T C and Chan L Y 2006 Flexible job-shop scheduling problem under resource constraints. Int. J. Prod. Res. 44(11): 2071–2089

    Article  MATH  Google Scholar 

  72. Chan F T S, Chung S H and Chan P L Y 2006 Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems. Int. J. Prod. Econ. Res. 44(3): 523–543

    Article  Google Scholar 

  73. Chan F T, Chung S H, Chan L Y, Finke G and Tiwari M K 2006 Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach. Robot. Comput. Integr. Manuf. 22(5): 493–504

    Article  Google Scholar 

  74. Bjork K and Carlsson C 2007 The effect of flexible lead times on a paper producer. Int. J. Prod. Econ. 107(1): 139–150

    Article  Google Scholar 

  75. Chatfield D C 2007 The economic lot scheduling problem: A pure genetic search approach. Comput. Oper. Res. 34(10): 2865–2881

    Article  MATH  Google Scholar 

  76. Li Y, Chen J and Cai X 2007 Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing. Int. J. Prod. Econ. 105(2): 301–317

    Article  Google Scholar 

  77. Chan F T S, Wong T C and Chan L Y 2008 Lot streaming for product assembly in job shop environment. Robot. Comput. Integr. Manuf. 24(3): 321–331

    Article  MathSciNet  Google Scholar 

  78. Chung S H, Chan F T and Chan H K 2009 A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling. Eng. Appl. Artif. Intell. 22(7): 1005–1014

    Article  Google Scholar 

  79. Chan F T, Wong T C and Chan L Y 2009 The application of genetic algorithms to lot streaming in a job-shop scheduling problem. Int. J. Prod. Res. 47(12): 3387–3412

    Article  MATH  Google Scholar 

  80. Chan F T and Kumar V 2009 Performance optimization of a leagility inspired supply chain model: A CFGTSA algorithm based approach. Int. J. Prod. Res. 47(3): 777–799

    Article  Google Scholar 

  81. Chan F T, Wong T C and Chan L Y 2009 An evolutionary algorithm for assembly job shop with part sharing. Comput. Ind. Eng. 57(3): 641–651

    Article  MathSciNet  Google Scholar 

  82. Engin O, Ceran G, and Yilmaz M K 2011 An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems. Appl. Soft Comput. 11: 3056–3065

    Article  Google Scholar 

  83. Ławrynowicz A 2011 Advanced scheduling with genetic algorithms in supply networks. J. Manuf. Technol. Manag. 22(6): 748–769

    Article  Google Scholar 

  84. Chiou C W, Chen W M, Liu C M and Wu M C 2012 A genetic algorithm for scheduling dual flow shops. Expert Syst. Appl. 39: 1306–1314

    Article  Google Scholar 

  85. Musharavati F and Hamouda A S M 2011 Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines. Expert Syst. Appl. 38: 10770–10779

    Article  Google Scholar 

  86. Ramezanian R, Rahmani D and Barzinpour F 2012 An aggregate production planning model for two phase production systems: Solving with genetic algorithm and tabu search. Expert Syst. Appl. 39: 1256–1263

    Article  Google Scholar 

  87. Zamarripa M, Silvente J and Espuña A 2012 Supply chain planning under uncertainty using genetic algorithms. Comput. Aided Chem. Eng. 30: 457–461

    Article  Google Scholar 

  88. Wong C S, Chan F T S and Chung S H 2012 A genetic algorithm approach for production scheduling with mould maintenance consideration. Int. J. Prod. Res. 50(20): 5683–5697

    Article  Google Scholar 

  89. Vianna D S, Martins C B and Pulini I C 2013 Using multiobjective genetic algorithm and multicriteria analysis for the production scheduling of a Brazilian Garment Company. INTECH Open Access Publisher. doi:10.5772/53701

  90. Mok P Y, Cheung T Y, Wong W K, Leung S Y S and Fan J T 2013 Intelligent production planning for complex garment manufacturing. J. Intell. Manuf. 24(1): 133–145

    Article  Google Scholar 

  91. Mahmudy W F, Marian R M and Luong L H 2013 Optimization of part type selection and loading problem with alternative production plans in flexible manufacturing system using hybrid genetic algorithms-part 1: Modelling and representation. In: 2013 5th International Conference on Knowledge and Smart Technology (KST), IEEE, pp. 75–80

  92. Tan D D and Zhang Y M 2013 A method on process planning decision based on genetic algorithm. Adv. Mater. Res. 760: 1902–1905

    Article  Google Scholar 

  93. Chakrabortty R K and Hasin M A A 2013 Solving an aggregate production planning problem by fuzzy based genetic algorithm (FBGA) approach. Int. J. Fuzzy Logic Syst. (IJFLS) 3(1): 1–16

    Article  Google Scholar 

  94. Vasant P 2013 Hybrid linear search, genetic algorithms, and simulated annealing for fuzzy non-linear industrial production planning problems. In: Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance, pp. 87–109. Hershey, PA: IGI Global

    Chapter  Google Scholar 

  95. Chakrabortty R and Hasin M 2013 Solving an aggregate production planning problem by using multi-objective genetic algorithm (MOGA) approach. Int. J. Ind. Eng. Comput. 4(1): 1–12

    Google Scholar 

  96. Babaei M, Mohammadi M and Ghomi S F 2014 A genetic algorithm for the simultaneous lot sizing and scheduling problem in capacitated flow shop with complex setups and backlogging. Int. J. Adv. Manuf. Technol. 70(1–4): 125–134

    Article  Google Scholar 

  97. Kim D and Shin H J 2014 A hybrid heuristic approach for production planning in supply chain networks. Int. J. Adv. Manuf. Technol. 1–12. doi:10.1007/s00170-014-6599-4

  98. Yan H S, Wan X Q and Xiong F L 2014 Integrated production planning and scheduling for a mixed batch job-shop based on alternant iterative genetic algorithm. J. Oper. Res. Soc. doi:10.1057/jors.2014.88

    Google Scholar 

  99. Toledo C F M, de Oliveira L, de Freitas Pereira R, França P M and Morabito R 2014 A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem. Comput. Oper. Res. 48: 40–52

    Article  MathSciNet  Google Scholar 

  100. Mohapatra P, Nayak A, Kumar S K and Tiwari M K 2014 Multi-objective process planning and scheduling using controlled elitist non-dominated sorting genetic algorithm. Int. J. Prod. Res. 1–24. doi:10.1080/00207543.2014.957872

  101. Zhang W, Gen M and Jo J 2014 Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem. J. Intell. Manuf. 25(5): 881–897

    Article  Google Scholar 

  102. GodinhoFilho M, Barco C F and Neto R F T 2014 Using genetic algorithms to solve scheduling problems on flexible manufacturing systems (FMS): A literature survey, classification and analysis. Flex. Serv. Manuf. J. 26(3): 408–431

    Article  Google Scholar 

  103. Slak A, Tavčar J and Duhovnik J 2014 Case study analysis and genetic algorithm adaptation for job process planning and scheduling in batch production. J. Des. Res. 12(1): 52–77

    Google Scholar 

  104. Cui L X 2014 Joint optimization of production planning and supplier selection incorporating customer flexibility: An improved genetic approach. J. Intell. Manuf. 1–19. doi:10.1007/s10845-014-0932-5

  105. Do Ngoc, A D, Lee S H and Moon I 2014 Hybrid genetic algorithm for test bed scheduling problems. Int. J. Prod. Res. 52(4): 1074–1089. doi:10.1080/00207543.2013.838327

    Article  Google Scholar 

  106. Musharavati F and Hamouda A M S 2014 Multiple parts process planning in serial-parallel flexible flow lines: Part I—Process plan modeling framework. Int. J. Adv. Manuf. Technol. 1–23. doi:10.1007/s00170-014-6616-7

  107. Musharavati F and Hamouda A M S 2014 Multiple parts process planning in serial–parallel flexible flow lines: Part II—Solution method based on genetic algorithms with fixed-and variable-length chromosomes. Int. J. Adv. Manuf. Technol. 1–39. doi:10.1007/s00170-014-6459-2

  108. Huang J and Süer G A 2014 A dispatching rule-based genetic algorithm for multi-objective job shop scheduling using fuzzy satisfaction levels. Comput. Ind. Eng. doi:10.1016/j.cie.2014.12.001

    Google Scholar 

  109. Chamnanlor C, Sethanan K, Chien C F and Gen M 2014 Re-entrant flow shop scheduling problem with time windows using hybrid genetic algorithm based on auto-tuning strategy. Int. J. Prod. Res. 52(9): 2612–2629

    Article  Google Scholar 

  110. İnkaya T and Akansel M 2015 Coordinated scheduling of the transfer lots in an assembly-type supply chain: A genetic algorithm approach. J. Intell. Manuf. 1–11. doi:10.1007/s10845-015-1041-9

  111. Jamrus T, Chien C F, Gen M and Sethanan K 2015 Multistage production distribution under uncertain demands with integrated discrete particle swarm optimization and extended priority-based hybrid genetic algorithm. Fuzzy Optim. Decis. Mak. 14(3): 265–287

    Article  MathSciNet  Google Scholar 

  112. Furlan M, Almada-Lobo B, Santos M and Morabito R 2015 Unequal individual genetic algorithm with intelligent diversification for the lot-scheduling problem in integrated mills using multiple-paper machines. Comput. Oper. Res. 59: 33–50

    Article  MathSciNet  Google Scholar 

  113. Zhang L and Wong T N 2015 An object-coding genetic algorithm for integrated process planning and scheduling. Eur. J. Oper. Res. 244(2): 434–444

    Article  MathSciNet  MATH  Google Scholar 

  114. Costa A, Cappadonna F A and Fichera S 2015 A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. J. Intell. Manuf. 1–15. doi:10.1007/s10845-015-1049-1

  115. Kritchanchai D and MacCarthy B L 1999 Responsiveness of the order fulfilment process. Int. J. Oper. Prod. Manag. 19(8): 812–833

    Article  Google Scholar 

  116. Shu J, Li Z, Shen H, Wuc T, Zhong 2012 W A logistics network design model with vendor managed inventory. Int. J. Prod. Econom. 135: 754–761

    Article  Google Scholar 

  117. Berry L M, Murtagh B A, McMahon G B, Sugden S J and Welling L D 1998 Genetic algorithms in the design of complex distribution networks. Int. J. Phys. Distrib. Logist. Manag. 28(5): 377

    Article  Google Scholar 

  118. Syarif A, Yun Y and Gen M 2002 Study on multi-stage logistic chain network: A spanning tree-based genetic algorithm approach. Comput. Ind. Eng. 43(1–2): 299–314

    Article  Google Scholar 

  119. Xu H, Xu R and Ye Q 2006 Optimization of unbalanced multi-stage logistics systems based on prüfer number and effective capacity coding. Tsinghua Sci. Technol. 11(1): 96–101

    Article  MATH  Google Scholar 

  120. Xu J, Liu Q and Wang R 2008 A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor. Inform. Sci. 178(8): 2022–2043

    Article  MATH  Google Scholar 

  121. Xu T, Wei H and Wang Z 2009 Study on continuous network design problem using simulated annealing and genetic algorithm. Expert Syst. Appl. 36(2): 1322–1328

    Article  Google Scholar 

  122. Farahani R Z and Elahipanah M 2008 A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. Int. J. Prod. Econ. 111(2): 229–243

    Article  Google Scholar 

  123. Altiparmak F, Gen M, Lin L and Karaoglan I 2009 A steady-state genetic algorithm for multi-product supply chain network design. Comput. Ind. Eng. 56(2): 521–537

    Article  Google Scholar 

  124. Jawahar N and Balaji A N 2009 A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge. Eur. J. Oper. Res. 194(2): 496–537

    Article  MATH  Google Scholar 

  125. Chan F T S and Chung S H 2004 Multi-criteria genetic optimization for distribution network problems. Int. J. Adv. Manuf. Technol. 24(7–8): 517–532

    Article  Google Scholar 

  126. Chan F T, Chung S H and Choy K L 2006 Optimization of order fulfillment in distribution network problems. J. Intell. Manuf. 17(3): 307–319

    Article  Google Scholar 

  127. Ma H and Davidrajuh R 2005 An iterative approach for distribution chain design in agile virtual environment. Ind. Manag. Data Syst. 105(6): 815–834

    Article  Google Scholar 

  128. Jo J, Li Y and Gen M 2007 Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Comput. Ind. Eng. 53(2): 290–298

    Article  Google Scholar 

  129. Gen M and Syarif A 2005 Hybrid genetic algorithm for multi-time period production/distribution planning. Comput. Ind. Eng. 48(4): 799–809

    Article  Google Scholar 

  130. Aliev R A, Fazlollahi B, Guirimov B G and Aliev R R 2007 Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Inform. Sci. 177(20): 4241–4255

    Article  MATH  Google Scholar 

  131. Silva C A, Sousa J M C and Runkler T A 2007 Optimization of logistic systems using fuzzy weighted aggregation. Fuzzy Sets Syst. 158(17): 1947–1960

    Article  MathSciNet  MATH  Google Scholar 

  132. Silva C A, Sousa J M C and Runkler T A 2008 Rescheduling and optimization of logistic processes using GA and ACO. Eng. Appl. Artif. Intell. 21(3): 343–352

    Article  Google Scholar 

  133. Fischer T and Gehring H 2005 Planning vehicle transhipment in a seaport automobile terminal using a multi-agent system. Eur. J. Oper. Res. 166(3): 726–740

    Article  MATH  Google Scholar 

  134. Lau H C W, Ning A, Pun K F, Chin K S and Ip W H 2005 A knowledge-based system to support procurement decision. J. Knowl. Manag. 9(1): 87–100

    Article  Google Scholar 

  135. Altiparmak F, Gen M, Lin L and Paksoy T 2006 A genetic algorithm approach for multiobjective optimization of supply chain networks. Comput. Ind. Eng. 51(1): 196–215

    Article  Google Scholar 

  136. Caputo A C, Fratocchi L and Pelagagge P M 2006 A genetic approach for freight transportation planning. Ind. Manag. Data Syst. 106(5): 719–738

    Article  Google Scholar 

  137. Shintani K, Imai A, Nishimura E and Papadimitriou S 2007 The container shipping network design problem with empty container repositioning. Transp. Res. E Logist. Transp. Rev. 43(1): 39–59

    Article  Google Scholar 

  138. Naso D, Surico M, Turchiano B and Kaymak U 2007 Genetic algorithms for supply-chain scheduling: A case study in the distribution of ready-mixed concrete. Eur. J. Oper. Res. 177(3): 2069–2099

    Article  MATH  Google Scholar 

  139. Ko H J, Ko C S and Kim T 2006 A hybrid optimization/simulation approach for a distribution network design of 3PLS. Comput. Ind. Eng. 50(4): 440–449

    Article  MathSciNet  Google Scholar 

  140. Ko H J and Evans G W 2007 A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Comput. Oper. Res. 34(2): 346–366

    Article  MATH  Google Scholar 

  141. Lam C Y, Chan S L, Ip W H and Lau C W 2008 Collaborative supply chain network using embedded genetic algorithms. Ind. Manag. Data Syst. 108(8): 1101–1110

    Article  Google Scholar 

  142. Li L H, Fu Z, Zhou H P and Hu Z D 2013 Discrete logistics network design model under interval hierarchical OD demand based on interval genetic algorithm. J. Central South Univ. 20: 2625–2634

    Article  Google Scholar 

  143. Cheng J, Du P and Zhao M 2014 The research on continuous equilibrium network design model of stochastic demand and supply based on genetic algorithm. Bridges. doi:10.1061/9780784412602.0047

    Google Scholar 

  144. Hiremath N C, Sahu S and Tiwari M K 2013 Multi objective outbound logistics network design for a manufacturing supply chain. J. Intell. Manuf. 24(6): 1071–1084

    Article  Google Scholar 

  145. Cheshmehgaz H R, Desa M I and Wibowo A 2013 A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. J. Intell. Manuf. 24(2): 277–293

    Article  Google Scholar 

  146. Roghanian E and Kamandanipour K 2013 A fuzzy-random programming for integrated closed-loop logistics network design by using priority-based genetic algorithm. Int. J. Ind. Eng. Comput. 4(1): 139–154

    Google Scholar 

  147. Lau H C, Chan T M, Tsui W T, Chan F T, Ho G T and Choy K L 2009 A fuzzy guided multi-objective evolutionary algorithm model for solving transportation problem. Expert Syst. Appl. 36(4): 8255–8268

    Article  Google Scholar 

  148. Lin L, Zhang X, Yuan X and Zhou H 2014 Research on supply chain distribution network of bi-level programming model based on two-way approximation genetic algorithm. In: WHICEB Proceedings, p. 85

  149. Soleimani H and Kannan G 2015 A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Appl. Math. Modell. 39(14): 3990–4012. doi:10.1016/j.apm.2014.12.016

    Article  MathSciNet  Google Scholar 

  150. Demirel N, Özceylan E, Paksoy T and Gökçen H 2014 A genetic algorithm approach for optimising a closed-loop supply chain network with crisp and fuzzy objectives. Int. J. Prod. Res. 52(12): 3637–3664

    Article  Google Scholar 

  151. Che Z H, Chiang T A, Kuo Y C and Cui Z 2014 Hybrid algorithms for fuzzy reverse supply chain network design. Sci. World J. 2014: 497109. doi:10.1155/2014/497109

    Article  Google Scholar 

  152. Gu C and Tao Q 2014 A transforming quantum-inspired genetic algorithm for optimization of green agricultural products supply chain network. In: Computer engineering and networking, pp. 145–152. Springer International Publishing. doi:10.1007/978-3-319-01766-2_17

  153. Ghasimi S A, Ramli R and Saibani N 2014 A genetic algorithm for optimizing defective goods supply chain costs using JIT logistics and each-cycle lengths. Appl. Math. Modell. 38(4): 1534–1547

    Article  MathSciNet  Google Scholar 

  154. Taha R, Abdallah K, Sadek Y, El-Kharbotly A and Afia N 2014 Design of supply chain networks with supply disruptions using genetic algorithm. In: 25th annual POMS conference proceedings. Retrieved from https://mpra.ub.uni-muenchen.de/id/eprint/58062

  155. Dzupire N C and Nkansah-Gyekye Y 2014 A multi-stage supply chain network optimization using genetic algorithms. http://arxiv.org/abs/arXiv:1408.0614

  156. Rajendran V, Devadasan S R and Kannan S 2014Design of a logistics network in an organisation for optimising logistics cost and inventory using RSM and genetic algorithm. Appl. Mech. Mater. 592: 2601–2607

    Article  Google Scholar 

  157. Roghanian E and Pazhoheshfar P 2014 An optimization model for reverse logistics network under stochastic environment by using genetic algorithm. J. Manuf. Syst. 33(3): 348–356

    Article  Google Scholar 

  158. Chang F S, Wu J S, Lee C N and Shen H C 2014 Greedy-search-based multi-objective genetic algorithm for emergency logistics scheduling. Expert Syst. Appl. 41(6): 2947–2956

    Article  Google Scholar 

  159. Sadrnia A, Ismail N, Ariffin M K A M, Norzima Z and Boyer O 2014 Reverse logistics network optimizing by genetic algorithm: A case study of automotive wiring harnesses. Appl. Mech. Mater. 564: 740–746

    Article  Google Scholar 

  160. Liu D 2014 Network site optimization of reverse logistics for E-commerce based on genetic algorithm. Neur. Comput. Appl. 25(1): 67–71

    Article  Google Scholar 

  161. Chen J 2014 Logistics network optimization of import crude oil in china based on genetic algorithm. Adv. Mater. Res. 945: 3126–3129

    Article  Google Scholar 

  162. Hernandez-Hernandez H J, Montoya-Torres J R and Niebles-Atencio F 2014 Design of multi-product/multi-period closed-loop reverse logistics network using a genetic algorithm. In: 2014 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS), pp. 40–47

  163. Pasandideh S H R, Niaki S T A and Asadi K 2015 Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA. Inform. Sci. 292: 57–74

    Article  MathSciNet  Google Scholar 

  164. Baker B M and Ayechew M A 2003 A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30: 787–800

    Article  MathSciNet  MATH  Google Scholar 

  165. Pankratz G 2005 Dynamic vehicle routing by means of a genetic algorithm. Int. J. Phys. Distrib. Logist. Manag. 35(5): 362–383

    Article  Google Scholar 

  166. Torabi S A, Ghomi S M T F and Karimi B 2006 A hybrid genetic algorithm for the finite horizon economic lot and delivery scheduling in supply chains. Eur. J. Oper. Res. 173(1): 173–189

    Article  MathSciNet  MATH  Google Scholar 

  167. Fu L, Sun D and Rilett L R 2006 Heuristic shortest path algorithms for transportation applications: State of the art. Comput. Oper. Res. 33(11): 3324–3343

    Article  MATH  Google Scholar 

  168. Yang V, Ji X, Gao Z and Li K 2007 Logistics distribution centers location problem and algorithm under fuzzy environment. J. Comput. Appl. Math. 208(2): 303–315

    Article  MathSciNet  MATH  Google Scholar 

  169. Ganesh K and Narendran T T 2007 CLOVES: A cluster-and-search heuristic to solve the vehicle routing problem with delivery and pick-up. Eur. J. Oper. Res. 178(3): 699–717

    Article  MathSciNet  MATH  Google Scholar 

  170. Ho W, Ho G T S, Ji P and Lau H C W 2008 A hybrid genetic algorithm for the multi-depot vehicle routing problem. Eng. Appl. Artif. Intell. 21(4): 548–557

    Article  Google Scholar 

  171. Yucenur G N and Demirel N C 2011 A new geometric shape-based genetic clustering algorithm for the multi-depot vehicle routing problem. Expert Syst. Appl. 38: 11859–11865

    Article  Google Scholar 

  172. Anbuudayasankar S P, Ganesh K, Koh S C L and Ducq Y 2012 Modified savings heuristics and genetic algorithm for bi-objective vehicle routing problem with forced backhauls. Expert Syst. Appl. 39 2296–2305

    Article  Google Scholar 

  173. Chung-Cheng L and Vincent F Y 2012 Data envelopment analysis for evaluating the efficiency of genetic algorithms on solving the vehicle routing problem with soft time windows. Comput. Ind. Eng. 63: 520–529

    Article  Google Scholar 

  174. Derbel H, Jarboui B, Hanafi S and Chabchoub H 2012 Genetic algorithm with iterated local search for solving a location-routing problem. Expert Syst. Appl. 39: 2865–2871

    Article  MATH  Google Scholar 

  175. Vidal T, Crainic T G, Gendreau M and Prins C 2013 A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1): 475–489

    Article  MathSciNet  Google Scholar 

  176. Lu T, Zhan T and Hu F 2013 Application of niche cellular genetic algorithm in vehicle routing problem with time windows. In: International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012) Proceedings, pp. 405–415. Berlin: Springer

    Chapter  Google Scholar 

  177. Osaba E, Carballedo R, Diaz F and Perallos A 2013 Discussion related to “Wang C-H. and Lu, J.-Z. 2009 A hybrid genetic algorithm that optimizes capacitated vehicle routing problem. Expert Syst. Appl., 36(2), 2921–2936”. Expert Syst. Appl., 40(14): 5425–5426

  178. Deng Y, Xiang J and Ou Z 2013 Improvement of genetic algorithm for vehicle routing problems with time windows. In: 2013 IEEE Third International Conference on Intelligent System Design and Engineering Applications (ISDEA), pp. 866–869

  179. Hsu L F, Hsu C C and Lin T D 2014 An intelligent artificial system: Artificial immune based hybrid genetic algorithm for the vehicle routing problem. Appl. Math. 8(3): 1191–1200

    MathSciNet  Google Scholar 

  180. Barkaoui M and Gendreau M 2013 An adaptive evolutionary approach for real-time vehicle routing and dispatching. Comput. Oper. Res. 40(7): 1766–1776

    Article  MathSciNet  Google Scholar 

  181. Ventresca M, Ombuki-Berman B and Runka A 2013 Predicting genetic algorithm performance on the vehicle routing problem using information theoretic landscape measures. In: Evolutionary computation in combinatorial optimization pp. 214–225. Berlin: Springer

    Chapter  Google Scholar 

  182. Huang S, Fu X, Chen P, Ge C and Teng S 2013 An application study on vehicle routing problem based on improved genetic algorithm. In: Pervasive computing and the networked world, pp. 246–258. Berlin: Springer

    Chapter  Google Scholar 

  183. Liu R, Jiang Z and Geng N 2013 Erratum to: A hybrid genetic algorithm for the multi-depot open vehicle routing problem. OR Spectrum 1–2. doi:10.1007/s00291-013-0346-3

  184. Ursani Z, Essam D, Cornforth D and Stocker R 2013 Enhancements to the localized genetic algorithm for large scale capacitated vehicle routing problems. Int. J. Appl. Evol. Comput. (IJAEC) 4(1): 17–38

    Article  Google Scholar 

  185. Jie Jian, Xu Wang and Xianlong G E 2013 Research on capacitated vehicle routing problem with cloud adaptive genetic algorithm. J. Chongqing Univ. 8: 006

    Google Scholar 

  186. Zhou W, Song T, He F and Liu X 2013 Multiobjective vehicle routing problem with route balance based on genetic algorithm. Discrete Dyn. Nature Soc. 2013: 325686. doi:10.1155/2013/325686

    Google Scholar 

  187. Elhassania M, Jaouad B and Ahmed E A 2014 Solving the dynamic vehicle routing problem using genetic algorithms. In: 2014 IEEE International Conference on Logistics and Operations Management (GOL), pp. 62–69

  188. Nguyen P K, Crainic T G and Toulouse M 2014 A hybrid generational genetic algorithm for the periodic vehicle routing problem with time windows. J. Heuristics 20(4): 383–416

    Article  Google Scholar 

  189. Sivaram Kumar V, Thansekhar M R and Saravanan R 2014 A new multi objective genetic algorithm: Fitness aggregated genetic algorithm (FAGA) for vehicle routing problem. Adv. Mater. Res. 984: 1261–1268

    Article  Google Scholar 

  190. Liu R, Jiang Z and Geng N 2014 A hybrid genetic algorithm for the multi-depot open vehicle routing problem. OR Spectrum 36(2): 401–421

    Article  MathSciNet  MATH  Google Scholar 

  191. Pierre D M and Zakaria N 2014 Partially optimized cyclic shift crossover for multi-objective genetic algorithms for the multi-objective vehicle routing problem with time-windows. In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 106–115

  192. Mohr C M 2014 Optimization of warehouse order-picking routes using vehicle routing model and genetic algorithm. Doctoral dissertation, State University of New York at Binghamton

  193. Kumar V S, Thansekhar M R, Saravanan R and Amali S M J 2014 Solving multi-objective vehicle routing problem with time windows by FAGA. Proc. Eng. 97: 2176–2185

    Article  Google Scholar 

  194. Zhang J and Li J 2014 A hybrid genetic algorithm to the vehicle routing problem with fuzzy cost coefficients. In: 2014 IEEE 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 147–152

  195. Psychas I D, Marinaki M and Marinakis Y 2015 A parallel multi-start NSGA II algorithm for multiobjective energy reduction vehicle routing problem. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 336–350. Springer International Publishing. doi:10.1007/978-3-319-15934-8_23

  196. Cai Y G, Tang Y L and Yang Q J 2015 An improved genetic algorithm for multi-depot heterogeneous vehicle routing problem with simultaneous pickup and delivery time windows. Appl. Mech. Mater. 738: 361–365

    Article  Google Scholar 

  197. Karakatič S and Podgorelec V 2015 A survey of genetic algorithms for solving multi depot vehicle routing problem. Appl. Soft Comput. 27: 519–532

    Article  Google Scholar 

  198. Ahmadizar F, Zeynivand M and Arkat J 2015 Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach. Appl. Math. Model. 39(22): 7065–7081

    Article  MathSciNet  Google Scholar 

  199. Zhou G, Min H and Gen M 2002 The balanced allocation of customers to multiple distribution centers in the supply chain network: A genetic algorithm approach. Comput. Ind. Eng. 43(1–2): 251–261

    Article  Google Scholar 

  200. Zhou G, Min H and Gen M 2003 A genetic algorithm approach to the bi-criteria allocation of customers to warehouses. Int. J. Prod. Econ. 86(1): 35–45

    Article  Google Scholar 

  201. Dullaert W, Maes B, Vernimmen B and Witlox F 2005 An evolutionary algorithm for order splitting with multiple transport alternatives. Expert Syst. Appl. 28(2): 201–208

    Article  Google Scholar 

  202. Yang W, Chan F T and Kumar V 2012 Optimizing replenishment polices using genetic algorithm for single-warehouse multi-retailer system. Expert Syst. Appl. 39(3): 3081–3086

    Article  Google Scholar 

  203. Wang B, Fu X, Chen T and Zhou G 2014 Modeling supply chain facility location problem and its solution using a genetic algorithm. J. Softw. 9(9): 2335–2341

    Google Scholar 

  204. Nearchou A C, Giannikos I C and Lagodimos A G 2014 A genetic algorithm for the economic manpower shift planning problem. Cybern. Syst. 45(5): 439–464

    Article  Google Scholar 

  205. Rahmani A and MirHassani S A 2014 A hybrid Firefly-Genetic Algorithm for the capacitated facility location problem. Inform. Sci. 283, 70–78

    Article  MathSciNet  Google Scholar 

  206. Kuo R J 2001 A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm. Eur. J. Oper. Res. 129(3): 496–517

    Article  MathSciNet  MATH  Google Scholar 

  207. Lawrence J A and Pasternack B A 2002 Applied management science: Modelling, spreadsheet analysis, and communication for decision making, 2nd ed. New Jersey: Wiley

    Google Scholar 

  208. Chiraphadhanakul S, Dangprasert P and Avatchanakorn V 1997 Genetic algorithms in forecasting commercial banks deposit. In: Proceeding of IEEE International Conference on Intelligent Processing Systems, vol. 1, pp. 557–565

  209. Ju Y K, Kim C and Shim J C 1997 Genetic based fuzzy models: Interest rate forecasting problem. Comput. Ind. Eng. 33: 561–564

    Article  Google Scholar 

  210. Kim D and Kim C 1997 Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans. Fuzzy Syst. 5: 523–535

    Article  Google Scholar 

  211. Zhang S and Qinghe H 2014 Application of GA optimizing neural network to coal sales forecasts. In: 2nd International Conference on Information, Electronics and Computer. Atlantis Press

  212. Gao L, Xu K L and Mao D X 2013 Research of sales forecasting model and algorithm in food and beverage enterprise. In: The 19th International Conference on Industrial Engineering and Engineering Management, pp. 925–934. Berlin: Springer

    Chapter  Google Scholar 

  213. Jun T and Qing W 2015 Optimize BP neural network structure on car sales forecasts based on genetic algorithm. In: International Industrial Informatics and Computer Engineering Conference (IIICEC 2015), pp. 75–79. Atlantis Press

  214. Kristianto Y, Helo P, Jiao J and Sandhu M 2012 Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains. Eur. J. Oper. Res. 216: 346–355

    Article  MathSciNet  Google Scholar 

  215. O’donnell T, Maguire L, McIvor R and Humphreys P 2006 Minimizing the bullwhip effect in a supply chain using genetic algorithms. Int. J. Prod. Res. 44(8): 1523–1543

    Article  MATH  Google Scholar 

  216. Lu J, Humphreys P, McIvor R and Maguire L 2007 Employing genetic algorithms to minimise the bullwhip effect in a supply chain. In: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1527–1531

  217. Lu J, Humphreys P, McIvor R and Maguire L 2009 Employing Genetic Algorithms to minimise the Bullwhip Effect in an online efficient-responsive supply chain. In: SOLI’09. IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, 2009. pp. 117–122

  218. Othman K A and Gomma H W 2011, Reducing the bullwhip effect in supply chains using genetic algorithm and control engineering. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 440–445

  219. Yesmin T and Hasin M A A 2012 Determination of optimal ordering quantity and reduction of bullwhip effect in a multistage supply chain using genetic algorithm. Int. J. Integr. Supply Manag. 7(4): 193–214

    Article  Google Scholar 

  220. Tosun U, Dokeroglu T and Cosar A 2013A new parallel genetic algorithm for reducing the bullwhip effect in an automotive supply chain. Manuf. Modell. Manag. Control 7(1): 70–74

    Google Scholar 

  221. Devika K, Jafarian A, Hassanzadeh A and Khodaverdi R 2014 Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics. Ann. Oper. Res. 1–31. doi:10.1007/s10479-013-1517-y

  222. Herrmann J and Hodgson B 2001 SRM: Leveraging the supply base for competitive advantage In: Proceedings of the SMTA International Conference, Chicago, Illinois, 1 October, 2001

  223. Jauhar S K, Pant M and Deep A 2013 An approach to solve multi-criteria supplier selection while considering environmental aspects using differential evolution. In: International conference on swarm, evolutionary, and memetic computing, pp. 199–208. Springer International Publishing. doi:10.1007/978-3-319-03753-0_19

  224. Jauhar S, Pant M and Deep A 2014 Differential evolution for supplier selection problem: A DEA based approach. In: Proceedings of the Third International Conference on Soft Computing for Problem Solving, pp. 343–353. India: Springer

  225. Jauhar S K, Pant M and Abraham A 2014 A novel approach for sustainable supplier selection using differential evolution: A case on pulp and paper industry. In: Intelligent data analysis and its applications, vol. 2, pp. 105–117. Springer International Publishing. doi:10.1007/978-3-319-07773-4_11

  226. Kumar Jauhar S, Pant M and Nagar M C 2015 Differential evolution for sustainable supplier selection in pulp and paper industry: a DEA based approach. Comp Methods Mater. Sci. 15(1): 118–126. Retrieved from http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-9d8e4f95-3ff8-4093-9841-2bf874d49ed4

  227. Chiadamrong N and Prasertwattana K 2006 A comparative study of supply chain models under the traditional centralized and coordinating policies with incentive schemes. Comput. Ind. Eng. 50(4): 367–384

    Article  Google Scholar 

  228. Yang P C, Wee H M, Pai S and Tseng Y F 2011 Solving a stochastic demand multi-product supplier selection model with service level and budget constraints using Genetic Algorithm. Expert Syst. Appl. 38: 14773–14777

    Article  Google Scholar 

  229. Yeh W C and Chuang M C 2011 Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Syst. Appl. 38: 4244–4253

    Article  Google Scholar 

  230. Yang P C, Wee H M, Pai S and Tseng Y F 2011 Solving a stochastic demand multi-product supplier selection model with service level and budget constraints using Genetic Algorithm. Expert Syst. Appl. 38(12): 14773–14777

    Article  Google Scholar 

  231. Sadeghieh A, Dehghanbaghi M, Dabbaghi A and Barak S 2012 A genetic algorithm based grey goal programming (G3) approach for parts supplier evaluation and selection. Int. J. Prod. Res. 50(16): 4612–4630

    Article  Google Scholar 

  232. Shen Y S, Yang C C, Chung C J and Lin S C 2013 A multiple-supplier-multiple-buyer collaborative supply chain model considering information sharing investment using genetic algorithm solutions. Int. Rev. Bus. Res. Pap. 9(3): 146–161

    Google Scholar 

  233. Chan G Y and Khoh C T 2014 Enhancing decision of supplier selection using a genetic algorithm: A case study. In: 2014 10th International Conference on Natural Computation (ICNC), pp. 315–320

  234. Cooper Robert G, Edgett S J and Kleinschmidt E J 1998 Portfolio management for new products, Reading, MA; Perseus Books

    Google Scholar 

  235. Fernando M L and Escobedo P 2011 Selecting the best portfolio alternative from a hybrid multiobjective GA-MCDM approach for new product development in the pharmaceutical industry. In: 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM), pp. 159–166

  236. Bao B, Yang Y, Liu A, Zhao J and Li L 2014 Task allocation optimization in collaborative customized product development based on adaptive genetic algorithm. J. Intell. Syst. 23(1): 1–19

    Article  Google Scholar 

  237. Fung C K, Kwong C K, Chan K Y and Jiang H 2014 A guided search genetic algorithm using mined rules for optimal affective product design. Eng. Optim. 46(8): 1094–1108

    Article  Google Scholar 

  238. Rogers D S, Lambert D M, Croxton K L and García-Dastugue S J 2002 The returns management process. Int. J. Logist. Manag. 13(2): 1–18

    Article  Google Scholar 

  239. Min H, Ko C S and Ko H J 2006 The spatial and temporal consolidation of returned products in a closed-loop supply chain network. Comput. Ind. Eng. 51(2): 309–320

    Article  Google Scholar 

  240. Min H, Jeongko H and SeongKo C 2006 A genetic algorithm approach to developing the multiechelon reverse logistics network for product returns. Omega Int. J. Manag. Sci. 34(1) 56–69

    Article  Google Scholar 

  241. Lieckens K and Vandaele N 2007 Reverse logistics network design with stochastic lead times. Comput. Oper. Res. 34(2): 395–416

    Article  MATH  Google Scholar 

  242. Min H and Ko H 2008 The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers. Int. J. Prod. Econ. 113(1): 176–192

    Article  Google Scholar 

  243. Trappey A J, Trappey C V and Wu C R 2010 Genetic algorithm dynamic performance evaluation for RFID reverse logistic management. Expert Syst. Appl. 37(11): 7329–7335

    Article  Google Scholar 

  244. Zhou G and Min H 2011 Designing a closed-loop supply chain with stochastic product returns: A Genetic Algorithm approach. Int. J. Logist. Syst. Manag. 9(4): 397–418

    Article  Google Scholar 

  245. Diabat A, Kannan D, Kaliyan M and Svetinovic D 2013 An optimization model for product returns using genetic algorithms and artificial immune system. Res. Conserv. Recycl. 74: 156–169

    Article  Google Scholar 

  246. Li Y, Guo H, Wang L and Fu J 2013 A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under E-supply chain environment. Sci. World J. 2013: 125893. doi:10.1155/2013/125893

    Google Scholar 

  247. Boudhar H, Dahane M and Rezg N 2013 Spare part returns in stochastic deteriorating manufacturing system under a condition-based maintenance policy: Simulation-based genetic algorithm approach. Manuf. Modell. Manag. Control 7(1): 1399–1404

    Google Scholar 

  248. Guo H and Li Y 2014 Multiobjective location-inventory-routing problem taking returns into consideration. In: Proceedings of the Ninth International Symposium on Linear Drives for Industry Applications, vol 2, pp. 19–26. Berlin: Springer

  249. Ghezavati V and Nia N S 2014 Development of an optimization model for product returns using genetic algorithms and simulated annealing. Soft Comput. 1–15. doi:10.1007/s00500-014-1465-8

  250. Langer M, Loidl S and Nerb M 1999 Customer service management: Towards a management information base for an IP connectivity service. In: The Fourth IEEE Symposium on Computers and Communications, Red Sea, Egypt, pp. 149–155

    Google Scholar 

  251. Robert S 1991 Computer aided marketing and selling. In: Butterworth Heinemann ISBN 978-0-7506-1707-9

  252. Jauhar S K and Pant M 2016 Sustainable supplier’s management using differential evolution. In: Problem solving and uncertainty modeling through optimization and soft computing applications, pp. 239–263. Hershey, PA: Information Science Reference. doi:10.4018/978-1-4666-9885-7.ch012

  253. Enireddy V and Kumar R K 2015 Improved cuckoo search with particle swarm optimization for classification of compressed images. Sadhana 40(8): 2271–2285

    Article  MathSciNet  MATH  Google Scholar 

  254. Jauhar S K and Pant M 2016 Using differential evolution to develop a carbon integrated model for performance evaluation and selection of sustainable suppliers in Indian automobile supply chain. In: Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Springer International Publishing

  255. Garg S, Patra K and Pal S K 2014 Particle swarm optimization of a neural network model in a machining process. Sadhana 39(3): 533–548

    Article  MathSciNet  MATH  Google Scholar 

  256. Jauhar S K and Pant M 2016 Sustainable supplier selection: a new differential evolution strategy with automotive industry application. In: Recent developments and new direction in soft-computing foundations and applications, pp. 353–371. Springer International Publishing. doi:10.1007/978-3-319-32229-2_25

  257. Balachandar C, Arunkumar S and Venkateasan M 2015 Computational heat transfer analysis and combined ANN–GA optimization of hollow cylindrical pin fin on a vertical base plate. Sadhana 40(6): 1845–1863

    Article  Google Scholar 

  258. Jauhar S K, Pant M and Dutt R 2016 Performance measurement of an Indian higher education institute: A sustainable educational supply chain management perspective. Int. J. Syst. Assur. Eng. Manag. 1–14. doi:10.1007/s13198-016-0505-4

  259. Jeevananthan S 2015 Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic equations (SHE) in multi-level voltage source inverter. Sadhana 40(8): 2389–2410

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge DST, grant number INT/FRG/DAAD/P-251/2015 for the partial financial support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Jauhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauhar, S.K., Pant, M. Genetic algorithms in supply chain management: A critical analysis of the literature. Sādhanā 41, 993–1017 (2016). https://doi.org/10.1007/s12046-016-0538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0538-z

Keywords

Navigation