Skip to main content
Log in

Estimation of algal colonization growth on mortar surface using a hybridization of machine learning and metaheuristic optimization

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Estimation of the algal colonization growth on façade structure can provide useful information for the task of building maintenance. This research proposes a machine learning method based on the least squares support vector regression (LS-SVR) for modelling the growth time of the green alga Klebsormidium flaccidum on mortar surfaces. Furthermore, to identify an appropriate set of the LS-SVR hyper-parameters, the flower pollination algorithm (FPA) is employed as an optimization technique. The characteristics of the mortar samples, including surface roughness, porosity, surface pH, carbonated condition and type of cement, are employed as input factors for the analysing process. This study relies on a dataset that records 539 laboratory experiments to establish a hybrid model of the LS-SVR and the FPA. The cross-validation process reveals that the proposed method can successfully capture the functional relationship between the algal colonization growth and its influencing factors with a satisfactory outcome (the coefficient of determination R 2 = 0.94 and the root mean square error RMSE = 4.55). These facts demonstrate that the hybrid model is a promising tool for assisting the decision-making process in building maintenance planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barberousse H, Ruot B, Yéprémian C and Boulon G 2007 An assessment of façade coatings against colonisation by aerial algae and cyanobacteria. Build. Environ. 42: 2555–2561

    Article  Google Scholar 

  2. Dalod E, Govin A, Guyonnet R, Grosseau P, Lors C and Damidot D 2014 Influence of the chemical composition of mortars on algal biofouling. In: Proceedings of the International Conference on Calcium Aluminate, May 2014, Palais des Papes, Avignon, France, pp. 523–534

    Google Scholar 

  3. Gaylarde C C and Morton L H G 1999 Deteriogenic biofilms on buildings and their control: a review. Biofouling 14: 59–74

    Article  Google Scholar 

  4. Gorbushina A A 2007 Life on the rocks. Environ. Microbiol. 9: 1613–1631

    Article  Google Scholar 

  5. Scheerer S, Ortega-Morales O and Gaylarde C 2009 Microbial deterioration of stone monuments—an updated overview. Adv. Appl. Microbiol. 66: 97–139

    Article  Google Scholar 

  6. Ortega-Calvo J J, Hernandez-Marine M and Saiz-Jimenez C 1991 Biodeterioration of building-materials by cyanobacteria and algae. Int. Biodeter. 28: 165–185

    Article  Google Scholar 

  7. Shang H S, Song Y P and Qin L K 2008 Experimental study on strength and deformation of plain concrete under triaxial compression after freeze–thaw cycles. Build. Environ. 43: 1197–1204

    Article  Google Scholar 

  8. De Muynck W, Ramirez A M, De Belie N and Verstraete W 2009 Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete. Int. Biodeter. Biodegr. 63: 679–689

    Article  Google Scholar 

  9. Dubosc A, Escadeillas G and Blanc P J 2001 Characterization of biological stains on external concrete walls and influence of concrete as underlying material. Cem. Concr. Res. 31: 1613–1617

    Article  Google Scholar 

  10. Rirsch E and Zhang Z 2010 Rising damp in masonry walls and the importance of mortar properties. Constr. Build. Mater. 24: 1815–1820

    Article  Google Scholar 

  11. Gaylarde C Ribas Silva M and Warscheid T 2003 Microbial impact on building materials: an overview. Mater. Struct. 36: 342–352

    Google Scholar 

  12. Saiz-Jimenez C 1995 Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia 11: 161–175

    Article  Google Scholar 

  13. Cruzan R 2009 Manager’s guide to preventive building maintenance. Georgia, United States: The Fairmont Press

  14. MacDonald J 1993 The effects of commercial chemical cleaning processes on sandstones in Scotland. Aberdeen: The Robert Gordon University.

    Google Scholar 

  15. Burkhardt M, Kupper T, Hean S, Haag R, Schmid P, Kohler M and Boller M 2007 Biocides used in building materials and their leaching behavior to sewer systems. Water Sci. Technol. 56: 63–67

    Article  Google Scholar 

  16. Tran T H 2011 Influence des caractéristiques intrinsèques d’un mortier sur son encrassement biologique. France: Ecole Nationale Supérieure des Mines de Saint Etienne

  17. Dalod E 2015 Influence de la composition chimique de mortiers sur leur biodeterioration par les algues. France: Ecole Nationale Supérieure des Mines de Saint Etienne

  18. Tomaselli L, Lamenti G, Bosco M and Tiano P 2000 Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int. Biodeter. Biodegr. 46: 251–258

    Article  Google Scholar 

  19. Barberousse H 2006 Etude de la diversité des algues et des cyanobactéries colonisant les revêtements de façade en France et recherche des facteurs favor isant leur implantation. Paris, France: Muséum National d’Histoire Naturelle

    Google Scholar 

  20. Miller A, Dionísio A, Laiz L, Macedo M and Saiz-Jimenez C 2009 The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Ann. Microbiol. 59: 705–713

    Article  Google Scholar 

  21. Tran T H, Govin A, Guyonnet R, Grosseau P, Lors C, Garcia-Diaz E, Damidot D, Devès O and Ruot B 2012 Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum. Int. Biodeter. Biodegr. 70: 31–39

    Article  Google Scholar 

  22. Tran T H, Govin A, Guyonnet R, Grosseau P, Lors C, Damidot D, Devès O and Ruot B 2013 Avrami’s law based kinetic modeling of colonization of mortar surface by alga Klebsormidium flaccidum. Int. Biodeter. Biodegr. 79: 73–80

    Article  Google Scholar 

  23. Prieto B and Silva B 2005 Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeter. Biodegr. 56: 206–215

    Article  Google Scholar 

  24. Suykens J, Gestel J V, Brabanter J D, Moor B D and Vandewalle J 2002 Least squares support vector machines. Singapore: World Scientific

    Book  MATH  Google Scholar 

  25. Yang X S 2012 Flower pollination algorithm for global optimization. In: Durand-Lose J and Jonoska N (Eds.) Unconventional computation and natural computation. Berlin–Heidelberg: Springer, pp. 240–249

  26. Xu S, Liu Z and Zhang Y 2016 Least squares support vector regression and interval type-2 fuzzy density weight for scene denoising. Soft Comput. 20(4): 1459–1470

    Article  Google Scholar 

  27. Pham A, Hoang N and Nguyen Q 2015 Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civil Eng. 30: 06015002

    Article  Google Scholar 

  28. Cheng M Y, Hoang N D and Wu Y W 2013 Hybrid intelligence approach based on LS-SVM and differential evolution for construction cost index estimation: a Taiwan case study. Autom. Constr. 35: 306–313

    Article  Google Scholar 

  29. Cheng M Y and Hoang N D 2013 Interval estimation of construction cost at completion using least squares support vector machine. J. Civil Eng. Manage. 20: 223–236

    Article  Google Scholar 

  30. Dos Santos G S, Luvizotto L G J, Mariani V C and Coelho L d S 2012 Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process. Expert Syst. Appl. 39: 4805–4812

    Article  Google Scholar 

  31. Gadelmawla E S, Koura M M, Maksoud T M A, Elewa I M and Soliman H H 2002 Roughness parameters. J. Mater. Process. Tech. 123: 133–145

    Article  Google Scholar 

  32. De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J and Suykens J A K 2010 LS-SVMlab toolbox user’s guide version 1.8. Internal Report 10-146. Leuven, Belgium: ESAT-SISTA, K.U. Leuven

  33. Samui P and Kurup P 2012 Multivariate adaptive regression spline (MARS) and least squares support vector machine (LSSVM) for OCR prediction. Soft Comput. 16: 1347–1351

    Article  Google Scholar 

  34. Rabiei M, Arghami N, Taheri S M and Gildeh B 2014 Least-squares approach to regression modeling in full interval-valued fuzzy environment. Soft Comput. 18: 2043–2059

    Article  MATH  Google Scholar 

  35. Vu D T and Hoang N D 2016 Punching shear capacity estimation of frp-reinforced concrete slabs using a hybrid machine learning approach. Struct. Infrastruct. Eng. 12(9): 1153-1161

    Article  Google Scholar 

  36. Cheng M Y, Hoang N D and Wu Y W 2015 Cash flow prediction for construction project using a novel adaptive time-dependent least squares support vector machine inference model. J. Civil Eng. Manage. 21: 679–688

    Article  Google Scholar 

  37. Cheng M Y and Hoang N D 2016 A self-adaptive fuzzy inference model based on least squares SVM for estimating compressive strength of rubberized concrete. Int. J. Inf. Technol. Decis. Making 15: 603–619

    Article  Google Scholar 

  38. De Brabanter K, De Brabanter J, Suykens J A K and De Moor B 2011 Approximate confidence and prediction intervals for least squares support vector regression. IEEE Trans. Neural Netw. 22: 110–120

    Article  Google Scholar 

  39. Glover B J 2007 Understanding flowers and flowering: an integrated approach. UK: Oxford University Press

  40. Yang X S 2014 Nature-inspired optimization algorithms. Amsterdam, Netherlands: Elsevier

  41. Łukasik S and Kowalski P 2015 Study of flower pollination algorithm for continuous optimization. In: Angelov P, Atanassov K T, Doukovska L, Hadjiski M, Jotsov V, Kacprzyk J, Kasabov N, Sotirov S, Szmidt E and Zadrożny S (Eds.) Intelligent Systems’2014. Cham: Springer International Publishing, pp. 451–459

    Google Scholar 

  42. Yang X S, Karamanoglu M and He X 2013 Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optimiz. 46: 1222–1237

    Article  MathSciNet  Google Scholar 

  43. Chakraborty D, Saha S and Dutta O 2014 DE-FPA: a hybrid differential evolution–flower pollination algorithm for function minimization. In: Proceedings of the International Conference on High Performance Computing and Applications (ICHPCA), 22–24 December 2014, Bhubaneswar, India, pp. 1–6

    Google Scholar 

  44. Wang R and Zhou Y 2014 Flower pollination algorithm with dimension by dimension improvement. Math. Probl. Eng. vol. 2014, Article ID 481791

  45. Celik Y and Ulker E 2013 An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization. Sci. World J., vol. 2013, Article ID 370172

  46. De B K, Suykens J and De Moor B 2013 Nonparametric regression via StatLSSVM. J. Stat. Softw. 55: 1–22

    Google Scholar 

  47. Hagan M T and Menhaj M B 1994 Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5: 989–993

    Article  Google Scholar 

  48. Chou J S, Chiu C K, Farfoura M and Al-Taharwa I 2011 Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. J. Comput. Civil Eng. 25: 242–253

    Article  Google Scholar 

  49. Piotrowski A P and Napiorkowski J J 2011 Optimizing neural networks for river flow forecasting – Evolutionary Computation methods versus the Levenberg–Marquardt approach. J. Hydrol. 407: 12–27

    Article  Google Scholar 

  50. Tien Bui D, Pradhan B, Lofman O, Revhaug I and Dick O B 2012 Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171–172: 12–29

    Article  Google Scholar 

  51. Farfani H A, Behnamfar F and Fathollahi A 2015 Dynamic analysis of soil–structure interaction using the neural networks and the support vector machines. Expert Syst. Appl. 42: 8971–8981

    Article  Google Scholar 

  52. Beale M H, Hagan M T and Demuth H B 2012 Neural network toolbox user’s guide. United States: The MathWorks

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhat-Duc Hoang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, TH., Hoang, ND. Estimation of algal colonization growth on mortar surface using a hybridization of machine learning and metaheuristic optimization. Sādhanā 42, 929–939 (2017). https://doi.org/10.1007/s12046-017-0652-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0652-6

Keywords

Navigation