Skip to main content
Log in

Fabrication of third generation Al–Li alloy by friction stir welding: a review

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Aerospace industry stimulates research for new materials to reduce the weight of it thereby reduction of fuel consumption. Aluminium–Lithium alloys have become a good alternative due to its inherent properties. Nevertheless, joining of these materials by traditional welding is difficult. Friction stir welding process considered as an ideal joining process for these materials due to low heat input. This paper reviews the fabrication of the latest generation of Al–Li alloy by friction stir welding. In addition, it also presents and discusses the effect of process parameters on microstructure, mechanical properties and precipitate distribution in friction stir welded joint of Al–Li alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Rioja R J and Liu J 2012 The evolution of Al–Li base products for aerospace and space applications. Metall. Mater. Trans. A, 43: 3325–3337

    Google Scholar 

  2. Cavaliere P, Cabibbo M, Panella F and Squillace A 2009 2198 Al–Li plates joined by friction stir welding: mechanical and microstructural behaviour. Mater. Des. 30(9): 3622–3631

    Google Scholar 

  3. Decreus B, Deschamps A, De Geuser F, Donnadieu P, Sigli C and Weyland M 2013 The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 61(6): 2207–2218

    Google Scholar 

  4. Venkateswara Rao K and Ritchie R 1992 Fatigue in Aluminium Lithium Alloys. Int. Mater. Rev. 153–185

  5. Moreira P M G P, De Jesus A M P, De Figueiredo M A V, Windisch M, Sinnema G and De Castro P M S T 2012 Fatigue and fracture behaviour of friction stir welded aluminium–lithium 2195. Theor. Appl. Fract. Mech. 60(1): 1–9

    Google Scholar 

  6. Starke E A, Sanders T H and Palmer I G 1981 New approaches to alloy development in the Al-Li system. JOM, 33(8): 24–33

    Google Scholar 

  7. Prasad N E, Gokhale A and Wanhill R J H (eds) 2013 Aluminum-lithium alloys: processing, properties, and applications. Butterworth-Heinemann

  8. Starke Jr. E A 2014 Historical development and present status of aluminum–lithium alloys In: Aluminum-lithium Alloys, Butterworth-Heinemann, pp. 3–26

  9. Dursun T and Soutis C 2014 Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56: 862–871

    Google Scholar 

  10. Krug Matthew E, David N Seidman and David C Dunand 2012 Creep properties and precipitate evolution in Al–Li alloys micro alloyed with Sc and Yb. Mater. Sci. Eng. A 550: 300–311

    Google Scholar 

  11. Lequeu P, Smith K P and A Daniélou 2010 Aluminum-copper-lithium alloy 2050 developed for medium to thick plate. J. Mater. Eng. Perform. 19: 841–847

    Google Scholar 

  12. Mishra R S and Sidhar H 2017 Chapter 2-physical metallurgy of 2XXX aluminum alloys. In: H Sidhar, (editor). Friction stir welding of 2XXX aluminum alloys including Al-Li alloys, Butterworth-Heinemann, pp. 15–36

  13. Suresh S, Vasudevan A K, Tosten M and Howell P R 1987 Microscopic and macroscopic aspects of fracture in lithium-containing aluminum alloys. Acta Metall. 35(1): 25–46

    Google Scholar 

  14. El-Aty A A, Xu Y, Guo X, Zhang S, Ma Y and Chen D 2018 Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J. Adv. Res. 10: 49–67

    Google Scholar 

  15. Wanhill R J H and Bray G H 2014 Aerostructural design and its application to aluminum-lithium alloys. In: Aluminum-lithium alloys, Butterworth-Heinemann, pp. 27–58

  16. Xiao R and Xinyi Z 2014 Problems and issues in laser beam welding of aluminum–lithium alloys. J. Manuf. Process 16(2): 166–175

    Google Scholar 

  17. Ram G J, Mitra T K, Raju M K and Sundaresan S 2000 Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al-Li alloy. Mater. Sci. Eng. A 276(1-2): 48–57

    Google Scholar 

  18. Dhondt M, Aubert I, Saintier N and Olive J M 2014 Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget. Corros. Sci. 86: 123–130

    Google Scholar 

  19. Le Jolu T, Morgeneyer T F, Denquin A and Gourgues-Lorenzon AF 2015 Fatigue lifetime and tearing resistance of AA 2198 Al–Cu–Li alloy friction stir welds: effect of defects. Int. J. Fatigue. 70: 463–472

    Google Scholar 

  20. Cavaliere P, Desantis A, Panella F and Squillace A 2009 Effect of anisotropy on fatigue properties of 2198 Al–Li plates joined by friction stir welding. Eng. Fail. Anal. 16: 1856–1865

    Google Scholar 

  21. Thomas W M 1991 Friction stir butt welding 1991 Inter. Pat. App. No. PCT/GB92/022-0.

  22. Ma Y E and Phil 2011 Residual stress effects and fatigue behavior of friction-stir-welded 2198-T8 Al-Li alloy joints. J. Aircr. 48(4): 1238–1244

    Google Scholar 

  23. Gibson B T, Lammlein D H, Prater T J, Longhurst W R Cox, C D Ballun, M C Dharmaraj, K J Cook, G E and Strauss A M 2014 Friction stir welding: process, automation, and control. J. Manuf. Process. 16(1): 56–73

    Google Scholar 

  24. Lee H-S, Yoon J-H, Yoo J-T and No K 2016 Friction stir welding process of aluminum-lithium alloy 2195. In: International conference on manufacturing engineering and materials, ICMEM2016, 6–10 June 2016, Novy Smokoves, Slovakia, volume 149, Procedia Engineering, pp. 62–66

  25. Chao Y J, Qi X and Tang W 2003 Heat transfer in friction stir welding—experimental and numerical studies 2003 J. Manuf. Sci. Eng. 125(1): 138–145

    Google Scholar 

  26. Dehelean D, Safta V, Cojocaru R, Hälker T and Ciuca C 2008 Monitoring the quality of friction stir welded joints by infrared thermography. Weld. World 52: 621–626.

    Google Scholar 

  27. Alam M P and Sinha A N 2018 Nonlinear finite element simulation of friction stir welding of AA7075 T651 aluminium alloy. Int. J. Mech. Prod. Eng. Res. Dev. 8(5): 271–280

    Google Scholar 

  28. Chao Y J and Qi X 1998 Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. J. Mater. Process. Manuf. Sci. 7: 215–233

    Google Scholar 

  29. Khandkar M Z H and Khan J A 2001 Thermal modeling of overlap friction stir welding for Al-alloys. J. Mater. Process. Manuf. Sci. 10: 91–105

    Google Scholar 

  30. Frigaard Ø, Grong Ø and Midling O T 2001 A process model for friction stir welding of age hardening aluminum alloys. Metall. Mater. Trans. A 32(5): 1189– 1200

    Google Scholar 

  31. Schneider J A, Nunes A C, P Chen P S and Steele G 2005 TEM study of the FSW nugget in AA2195-T81. J. Mater. Sci. 40(16): 4341–4345

    Google Scholar 

  32. Shi L and Wu C S 2017 Transient model of heat transfer and material flow at different stages of friction stir welding process. J. Manuf. Process. 25: 323–339

    Google Scholar 

  33. Đurđanović M B, Mijajlović M M, Milčić D S and Stamenković D S 2009 Heat generation during friction stir welding process. Tribol. Ind. 31: 8–14

    Google Scholar 

  34. Mishra R S and Ma Z Y 2005 Friction stir welding and processing. Mater. Sci. Eng. R 50(1–2): 1–78

    Google Scholar 

  35. Kang S-W, Jang B-S and Kim J-W 2014 A study on heat-flow analysis of friction stir welding on a rotation affected zone. J. Mech. Sci. Technol. 28(9): 3873–3883

    Google Scholar 

  36. Eswara P N and Ramachandran T R 2014 Phase diagrams and phase reactions in Al-Li alloys. In: Aluminum-lithium alloys. Butterworth-Heinemann, pp. 61–97

  37. Liu H, Hu Y, Dou C and Sekulic D P 2017 An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy. Mater. Charact. 123: 9–19

    Google Scholar 

  38. Lertora E and Gambaro C 2010 AA8090 Al-Li alloy FSW parameters to minimize defects and increase fatigue life. Int. J. Mater. Form. 3(1): 1003–1006

    Google Scholar 

  39. Moshwan R, Yusof F, Hassan M A and Rahmat S M 2015 Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al–Mg–Cr–Mn. Mater. Des. 66: 118–128

  40. Zhang J, Feng X S, Gao J S, Huang H, Ma Z Q and Guo L J 2018 Effects of welding parameters and post heat treatment on mechanical properties of friction stir welded AA 2195-T8 Al-Li alloy. J. Mater. Sci. Technol. 34(1): 219–227

    Google Scholar 

  41. Arbegast W J and Hartley P J 1999 Friction stir weld technology development at lockheed martin michoud space system—an overview. ASM international, trends in welding research, pp. 541–546

  42. Rao J, Payton E J, Somsen C, Neuking K, Eggeler G, Kostka A and dos Santos JF2010 Where does the lithium go? A study of the precipitates in the stir zone of a friction stir weld in a Li-containing 2xxx Series Al Alloy. Adv. Eng. Mater. 12(4): 298–303

  43. Mao Y, Ke L, Liu F, Huang C, Chen Y and Liu Q 2015 Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of 2060 aluminum lithium alloy. Int. J. Adv. Manuf. Technol. 81(5–8): 1419–1431

    Google Scholar 

  44. Zhang Y N, Cao X, Larose S and Wanjara P 2012 Review of tools for friction stir welding and processing. Can. Metall. Q 51(3): 250–261

    Google Scholar 

  45. Thomas W M, Johnson K I and Wiesner C S 2003 Friction stir welding–recent developments in tool and process technologies. Adv. Eng. Mater. 5(7): 485–490

    Google Scholar 

  46. Rai R, De A, Bhadeshia H and DebRoy T 2011 Friction stir welding tools. Sci. Technol. Weld. Join. 16(4): 325–342

    Google Scholar 

  47. Singh K V, Hamilton C and Dymek S 2010 Developing predictive tools for friction stir weld quality assessment. Sci. Technol. Weld. Join 15(2): 142–148

    Google Scholar 

  48. Aissani M, Gachi S, Boubenider F and Benkedda Y 2010 Design and optimization of friction stir welding tool. Mater. Manuf. Process. 25(11): 1199–1205

    Google Scholar 

  49. Elangovan K and Balasubramanian V 2008 Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA 2219 aluminium alloy. J. Mater. Process. Tech. 200(1–3): 163–175

    Google Scholar 

  50. Malard B, Geuser F De and Deschamps A 2015 Microstructure distribution in an AA 2050 T34 friction stir weld and its evolution during post-welding heat treatment. Acta Mater. 101: 90–100

    Google Scholar 

  51. Ma Y E, Xia Z C, Jiang R R and Li W 2013 Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum–lithium alloy joints. Eng. Fract. Mech. 114: 1–11

    Google Scholar 

  52. Li W, Jiang R, Zhang Z and Ma Y E 2013 Effect of rotation speed to welding speed ratio on microstructure and mechanical behavior of friction stir welded aluminum–lithium alloy joints. Adv. Eng. Mater. 15(11): 1051–1058

    Google Scholar 

  53. Hatamleh O, Hill M, Forth S and Garcia D 2009 Fatigue crack growth performance of peened friction stir welded 2195 aluminum alloy joints at elevated and cryogenic temperatures. Mater. Sci. Eng. A 519(1–2): 61–69

    Google Scholar 

  54. Chen H, Fu L and Liang P 2017 Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 Al-Li alloy ultra-thin sheets. J. Alloys 692: 155–169

    Google Scholar 

  55. Sidhar H, Mishra R S, Reynolds A P and Baumann J A 2017 Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy. J. Alloys. Compd. 722: 330–338

    Google Scholar 

  56. Fonda R W and J F Bingert 2006 Precipitation and grain refinement in a 2195 Al friction stir weld. Metall. Mater. Trans. A 37(12): 3593–3604

    Google Scholar 

  57. Chu Q, Li W Y, Yang X W, Shen J J, Vairis A, Feng W Y and Wang W B 2018 Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy. J. Mater. Sci. Technol. 34(10): 1739–1746

    Google Scholar 

  58. Gao C, Ma Y, Tang L Z, Wang P and Zhang X 2017 Microstructural evolution and mechanical behavior of friction spot welded 2198-T8 Al-Li alloy during aging treatment. Mater. Des. 115: 224–230

    Google Scholar 

  59. Threadgill P L, A J Leonard H R Shercliff and P J Withers 2009 Friction stir welding of aluminium alloys. Int. Mater. Rev. 54(2): 49–93

    Google Scholar 

  60. Sidhar H and Mishra R S 2016 Aging kinetics of friction stir welded Al-Cu-Li-Mg-Ag and Al-Cu-Li- Mg alloys. Mater. Des. 110: 60–71

    Google Scholar 

  61. Cam G and Mistikoglu S 2014 Recent develop- ments in friction stir welding of Al-alloys. J. Mater. Eng. Perform. 23(6): 1936–1953

    Google Scholar 

  62. Jata K and Semiatin S 2000 Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys (No. AFRL-ML-WP-TP-2003-441), Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing Directorate

  63. Pouget G and Anthony P Reynolds 2008 Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. Int. J. Fatigue 30(3): 463–472

    Google Scholar 

  64. John R, Jata K V and Sadananda K 2003 Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys. Int. J. Fatigue 25(9–11): 939–948

    Google Scholar 

  65. Avettand-Fenoel M N and Taillard R 2015 Heterogeneity of the nugget microstructure in a thick 2050 Al friction-stirred weld. Metall. Mater. Trans. A 46(1): 300–314

    Google Scholar 

  66. Hatamleh O 2008 Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints. Mater. Sci. Eng. A 492(1–2): 168–176

    Google Scholar 

  67. Cai B, Z Q Zheng, D Q He, S C Li and H P Li 2015 Friction stir weld of 2060 Al–Cu–Li alloy: Mi-crostructure and mechanical properties. J. Alloys Compd. 649: 19–27

    Google Scholar 

  68. Dhondt M, Aubert I, Saintier N and Olive J M 2015 Mechanical behavior of periodical microstructure induced by friction stir welding on Al–Cu–Li 2050 alloy. Mater. Sci. Eng. A 644: 69–75

    Google Scholar 

  69. Sutton M A Yang B Reynolds, A P and Taylor R 2002 Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater. Sci. Eng. A 323(1–2): 160–166

    Google Scholar 

  70. Benavides S, Li Y Murr, L Brown and McClure, J 1999 Low-temperature friction-stir welding of 2024 aluminum. Scr. Mater. 41(8): 809–815

    Google Scholar 

  71. Tao Y, D R Ni, B L Xiao, Z Y Ma, W Wu, R X Zhang and Y S Zeng 2017 Origin of unusual fracture in stirred zone for friction stir welded 2198-T8 Al-Li alloy joints. Mater. Sci. Eng. A 693: 1–13

    Google Scholar 

  72. Wang F F, W Y Li, J Shen, S Y Hu and J F dos Santos 2015 Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy. Mater. Des. 86: 933–940

    Google Scholar 

  73. Avettand-Fènoël M N and Taillard R 2016 Effect of a pre or post weld heat treatment on microstructure and mechanical properties of an AA 2050 weld obtained by SSFSW. Mater. Des. 89: 348–361

    Google Scholar 

  74. Chu Q, Yang X W, Li W Y and Li Y B 2016 Microstructure and mechanical behaviour of pinless friction stir spot welded AA2198 joints. Sci. Technol. Weld. Join. 21(3): 164–170

    Google Scholar 

  75. Dawood H I, Mohammed K S, Rahmat A and Uday M B 2015 The influence of the surface roughness on the microstructures and mechanical properties of 6061 aluminium alloy using friction stir welding. Surf. Coatings Technol. 270: 272–283

    Google Scholar 

  76. Krishnan K N 2002 On the formation of onion rings in friction stir welds. Mater. Sci. Eng. A 327(2): 246– 251

    Google Scholar 

  77. Qin H, Zhang H and Wu H 2015 The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy. Mater. Sci. Eng. A 626: 322–329

    Google Scholar 

  78. Milagre M X, Mogili N V, Donatus U, Giorjão R A, Terada M, Araujo J V S, Machado C S and Costa I 2018 On the microstructure characterization of the AA2098-T351 alloy welded by FSW. Mater. Charact. 140: 233–246

    Google Scholar 

  79. Ma Y E, Staron P, Fischer T and Irving P E 2011 Size effects on residual stress and fatigue crack growth in friction stir welded 2195-T8 aluminium–part I: experiments. Int. J. Fatigue 33(11): 1417–1425

    Google Scholar 

  80. Kamp N, Sullivan A and Robson J D 2007 Modelling of friction stir welding of 7xxx aluminium alloys. Mater. Sci. Eng. A 466(1–2): 246–255

    Google Scholar 

  81. Dos Santos J F, Staron P, Fischer T, Robson J D, Kostka A, Colegrove P, Wang H, Hilgert J, Bergmann L, Hütsch L L and Huber N Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation. Acta Mater. 148: 163–172

    Google Scholar 

  82. Oertelt G Babu S S, David S A and Kenik E A 2001 Effect of thermal cycling on friction stir welds of 2195 aluminum alloy. Welding Journal 80(3): 71–79

    Google Scholar 

  83. Sato Y S, Urata M, Kokawa H and Ikeda K 2003 Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater. Sci. Eng. A 354(1–2): 298–305

    Google Scholar 

  84. De Geuser F, Malard B and Deschamps A 2014 Microstructure mapping of a friction stir welded AA 2050 Al–Li–Cu in the T8 state. Philos. Mag. 94(13): 1451–1462

    Google Scholar 

  85. Shukla A K and Baeslack W A 2009 Study of process/structure/property relationships in friction stir welded thin sheet Al–Cu–Li alloy. Sci. Technol. Weld. Join. 14(4): 376–387

    Google Scholar 

  86. Gao C, Zhu Z, Han J and Li H 2015 Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy. Mater. Sci. Eng. A. 639: 489–499

    Google Scholar 

  87. Ma Y E, Zhao Z, Liu B and Li W 2013 Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints. Mater. Sci. Eng. A, 569: 41–47

    Google Scholar 

  88. Kroninger H R and Reynolds A P 2002 R-curve behaviour of friction stir welds in aluminium-lithium alloy 2195. Fatigue Fract. Eng. Mater. Struct. 25(3): 283–290

    Google Scholar 

  89. Lin Yi and Ziqiao Zheng 2017 Microstructural evolution of 2099 Al Li alloy during friction stir welding process. Mater. Charact. 123: 307–314

    Google Scholar 

  90. Jolu T Le, Thilo F Morgeneyer and Anne-Françoise Gourgues-Lorenzon 2010 Effect of joint line remnant on fatigue lifetime of friction stir welded Al–Cu–Li alloy. Sci. Technol. Weld. Join 15(8): 694–698

    Google Scholar 

  91. Steuwer A, Dumont M, Altenkirch J, Birosca S, Deschamps A, Prangnell P B and Withers P J 2011 A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld. Acta Mater. 59(8): 3002–3011

    Google Scholar 

  92. Liu H, Hu Y, Dou C and Sekulic D P 2017 An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy. Mater. Charact. 123: 9–19

    Google Scholar 

  93. Nelson T W, Steel R J and Arbegast W J 2003 In situ thermal studies and post-weld mechanical properties of friction stir welds in age hardenable aluminium alloys. Sci. Technol. Weld. Join 8(4): 283–288

    Google Scholar 

  94. Nayan N, Narayana Murty V V S, Jha A K, Pant B, Sharma S C, George K M and Sastry G V S 2014 Mechanical properties of aluminium–copper–lithium alloy AA2195 at cryogenic temperatures. Mater. Des. 58: 445–450

    Google Scholar 

  95. Tayon W A, Domack M S, Hoffman E K and Hales S J 2013 Texture evolution within the thermo-mechanically affected zone of an Al-Li alloy 2195 friction stir weld. Metall. Mater. Trans. A, 44(11): 4906–4913

    Google Scholar 

  96. Xu W, Liu J, Luan G and Dong C 2009 Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy. Mater. Des. 30(9): 3460–3467

    Google Scholar 

  97. Fonda R W and Bingert J F 2004 Microstructural evolution in the heat-affected zone of a friction stir weld. Metall. Mater. Trans. A 35(5): 1487–1499

    Google Scholar 

  98. Sato Y S and Kokawa H 2001 Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum. Metall. Mater. Trans. A 32(12): 3023–3031

    Google Scholar 

  99. Hatamleh O 2009 A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. Int. J. Fatigue 31(5): 974–988

    Google Scholar 

  100. Robe H, Zedan Y, Chen J, Monajati H, Feulvarch E and Bocher P 2015 Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3. Mater. Charact. 110: 242–251

    Google Scholar 

  101. Chen B, Guo M F, Zheng J X, Zhang K Y, Fan Y, Zhou L Y, Li X L and Lu C 2016 The effect of thermal exposure on the microstructures and mechanical properties of 2198 Al–Li Alloy. Adv. Eng. Mater. 18(7): 1225–1233

    Google Scholar 

  102. Wang X H, Wang J H, Yue X and Gao Y 2015 Effect of aging treatment on the exfoliation corrosion and stress corrosion cracking behaviors of 2195 Al–Li alloy. Mater. Des. 67: 596–605

    Google Scholar 

  103. Zhang S F, Zeng W D, Yang W H, Shi C L and Wang H J 2014 Ageing response of a Al–Cu–Li 2198 alloy. Mater. Des. 63: 368–374

    Google Scholar 

  104. Deng Y, Bai J, Wu X, Huang G, Cao L and Huang L 2017 Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy. J. Alloys Compd. 723: 661–666

    Google Scholar 

  105. Deschamps A, Decreus B, De Geuser F, Dorin T and Weyland M 2013 The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 61(11): 4010–4021

    Google Scholar 

  106. Shukla A K and Baeslack W A III 2007 Study of microstructural evolution in friction-stir welded thin-sheet Al–Cu–Li alloy using transmission-electron microscopy. Scr. Mater. 56(6): 513–516

    Google Scholar 

  107. Kumar K S, Brown S A and Pickens J R 1996 Microstructural evolution during aging of an AlCuLiAgMgZr alloy. Acta Mater. 44(5): 1899–1915

    Google Scholar 

  108. Dorin T, Deschamps A, De Geuser F, Lefebvre W and Sigli C 2014 Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy. Philos. Mag. 94(10): 1012–1030

    Google Scholar 

  109. Kumar K S and Heubaum, F H 1997 The effect of Li content on the natural aging response of Al-C-Li-Mg-Ag-Zr alloys. Acta Mater. 45(6): 2317–2327

    Google Scholar 

  110. Chen P S and Stanton W P 1996 A new aging treatment for improving cryogenic toughness of the main structural alloy of the super lightweight tank, National Aeronautics and Space Administration. Marshall Space Flight Center

  111. Kim J H, Jeun J H, Chun H J, Lee Y R, Yoo J T, Yoon, J H and Lee H S 2016 Effect of precipitates on mechanical properties of AA2195. J. Alloys Compd. 669: 187–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Parwez Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.P., Sinha, A.N. Fabrication of third generation Al–Li alloy by friction stir welding: a review. Sādhanā 44, 153 (2019). https://doi.org/10.1007/s12046-019-1139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1139-4

Keywords

Navigation