Skip to main content
Erschienen in: Energy Efficiency 5/2016

01.10.2016 | Original Article

Which factors drive CO2 emissions in EU-15? Decomposition and innovative accounting

verfasst von: Victor Moutinho, Mara Madaleno, Pedro Miguel Silva

Erschienen in: Energy Efficiency | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study breaks down carbon emissions into six effects within the 15 European Union countries group (EU-15) and analyses their evolution in four distinct periods: 1995–2000 (before European directive 2001/77/EC), 2001–2004 (after European directive 2001/77/EC and before Kyoto), 2005–2007 (after Kyoto implementation), and 2008–2010 (after Kyoto first stage), to determine which of them had more impact in the intensity of emissions. The complete decomposition technique was used to examine the carbon dioxide (CO2) emissions and its components: carbon intensity (CI effect); changes in fossil fuels consumption towards total energy consumption (EM effect); changes in energy intensity effect (EG effect); the average renewable capacity productivity (GC effect); the change in capacity of renewable energy per capita (CP effect); and the change in population (P effect). It is shown that in the post Kyoto period there is an even greater differential in the negative changes in CO2 emissions, which were caused by the negative contribution of the intensity variations of the effects EM, GC, CP and P that exceeded the positive changes occurred in CI and EG effects. It is also important to stress the fluctuations in CO2 variations before and after Kyoto, turning positive changes to negative changes, especially in France, Italy and Spain, revealing the presence of heterogeneity. Moreover, the positive effect of renewable capacity per capita and the negative effect of renewable capacity productivity are the main factors influencing the reduction in CO2 emissions during the Kyoto first stage. It is possible to infer from the results that one of the ways to reduce emissions intensity will be by increasing the renewable capacity and the productivity in energy generation and consequently through the reduction of the share of the consumption of fossil fuels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Such as the highest levels of energy intensity for Netherlands and Slovakia recorded in the second phase of the 2008–2012 Kyoto periods, whereas Luxembourg and Slovenia show the lowest levels of energy intensity and to a lesser extent Latvia, Austria, Germany and Italy.
 
2
In Ireland, Luxembourg, and Spain the population density increased by 21, 17, and 14 %, respectively, while in most of other member states the population density increased while Netherlands and Belgium emerge as the countries with the largest levels of population density.
 
Literatur
Zurück zum Zitat Achão, C., & Schaeffer, R. (2009). Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980–2007 period: Measuring the activity, intensity and structure effects. Energy Policy, 37(12), 5208–5220. doi:10.1016/j.enpol.2009.07.043.CrossRef Achão, C., & Schaeffer, R. (2009). Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980–2007 period: Measuring the activity, intensity and structure effects. Energy Policy, 37(12), 5208–5220. doi:10.​1016/​j.​enpol.​2009.​07.​043.CrossRef
Zurück zum Zitat Alam, M., Begum, I., Buysse, J., Rahman, S., & Huylenbroeck, G. (2011). Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renewable and Sustainable Energy Reviews, 15(6), 3243–3251. doi:10.1016/j.rser.2011.04.029.CrossRef Alam, M., Begum, I., Buysse, J., Rahman, S., & Huylenbroeck, G. (2011). Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India. Renewable and Sustainable Energy Reviews, 15(6), 3243–3251. doi:10.​1016/​j.​rser.​2011.​04.​029.CrossRef
Zurück zum Zitat Alcántara, V. E., & Padilla, E. R. (2005). Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Revista de Economía Crítica, Asociación de Economía Crítica, 4, 17–37. Alcántara, V. E., & Padilla, E. R. (2005). Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Revista de Economía Crítica, Asociación de Economía Crítica, 4, 17–37.
Zurück zum Zitat Ang, B. W. (1995). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095.CrossRef Ang, B. W. (1995). Decomposition methodology in industrial energy demand analysis. Energy, 20(11), 1081–1095.CrossRef
Zurück zum Zitat Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363–374.CrossRef Ang, B. W., & Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19(3), 363–374.CrossRef
Zurück zum Zitat Ang, B. W., & Zhang, F. (1999). Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique. Energy, 24(4), 297–305.CrossRef Ang, B. W., & Zhang, F. (1999). Inter-regional comparisons of energy-related CO2 emissions using the decomposition technique. Energy, 24(4), 297–305.CrossRef
Zurück zum Zitat Ang, B. W., & Zhang, F. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRef Ang, B. W., & Zhang, F. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149–1176.CrossRef
Zurück zum Zitat Ang, B. W., Liu, F., & Chew, E. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.CrossRef Ang, B. W., Liu, F., & Chew, E. (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31, 1561–1566.CrossRef
Zurück zum Zitat Ang, B. W., & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy Journal, 18(3), 59–73.CrossRef Ang, B. W., & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy Journal, 18(3), 59–73.CrossRef
Zurück zum Zitat Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRef Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRef
Zurück zum Zitat Bartoletto, S., & Rubio, M. (2008). Energy transition and CO2 emissions in southern Europe: Italy and Spain (1861–2000). Global Environment, 2, 46–81. Bartoletto, S., & Rubio, M. (2008). Energy transition and CO2 emissions in southern Europe: Italy and Spain (1861–2000). Global Environment, 2, 46–81.
Zurück zum Zitat Bhattacharyya, S. C., & Matsumura, W. (2010). Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis. Energy, 35, 3315–3322.CrossRef Bhattacharyya, S. C., & Matsumura, W. (2010). Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis. Energy, 35, 3315–3322.CrossRef
Zurück zum Zitat Brizga, J., Feng, K., & Hubacek, K. (2013). Drivers of CO 2 emissions in the former soviet union: a country level IPAT analysis from 1990 to 2010. Energy, 59, 743–753.CrossRef Brizga, J., Feng, K., & Hubacek, K. (2013). Drivers of CO 2 emissions in the former soviet union: a country level IPAT analysis from 1990 to 2010. Energy, 59, 743–753.CrossRef
Zurück zum Zitat Camarero, M., Castillo-Giménez, J., Picazo-Tadeo, A. J., & Tamarit, C. (2014). Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empirical Economics, 47, 143–168.CrossRef Camarero, M., Castillo-Giménez, J., Picazo-Tadeo, A. J., & Tamarit, C. (2014). Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empirical Economics, 47, 143–168.CrossRef
Zurück zum Zitat Commission of the European Communities. (2008). Communication from the Commission to the European Parliament, the Council, the European Economics and Social Committee and the Committee of the Regions. Commission of the European Communities. (2008). Communication from the Commission to the European Parliament, the Council, the European Economics and Social Committee and the Committee of the Regions.
Zurück zum Zitat Diakoulaki, D., & Mandaraka, M. (2007). Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 29(4), 636–664. doi:10.1016/j.eneco.2007.01.005.CrossRef Diakoulaki, D., & Mandaraka, M. (2007). Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 29(4), 636–664. doi:10.​1016/​j.​eneco.​2007.​01.​005.CrossRef
Zurück zum Zitat Dittmar, M. (2012). Nuclear energy: status and future limitations. Energy, 37(1), 35–40.CrossRef Dittmar, M. (2012). Nuclear energy: status and future limitations. Energy, 37(1), 35–40.CrossRef
Zurück zum Zitat Dursun, B., & Alboyaci, B. (2010). The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renewable and Sustainable Energy Review, 7, 1979–1988.CrossRef Dursun, B., & Alboyaci, B. (2010). The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renewable and Sustainable Energy Review, 7, 1979–1988.CrossRef
Zurück zum Zitat Ebohon, O. J., & Ikeme, A. J. (2006). Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries. Energy Policy, 34(18), 3599–3611. doi:10.1016/j.enpol.2004.10.012. Ebohon, O. J., & Ikeme, A. J. (2006). Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries. Energy Policy, 34(18), 3599–3611. doi:10.​1016/​j.​enpol.​2004.​10.​012.
Zurück zum Zitat European Commission (2014). Energy Economic Developments in Europe, European Economy Series, 1/2014. European Commission (2014). Energy Economic Developments in Europe, European Economy Series, 1/2014.
Zurück zum Zitat European Union. (2001). Directive 2001/77/EC of the European parliament and of the council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. European Union. (2001). Directive 2001/77/EC of the European parliament and of the council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market.
Zurück zum Zitat European Union. (2003). Directive 2003/30/EC of the European parliament and of the council of 8 may 2003 on the promotion of the use of biofuels or other renewable fuels for transport. European Union. (2003). Directive 2003/30/EC of the European parliament and of the council of 8 may 2003 on the promotion of the use of biofuels or other renewable fuels for transport.
Zurück zum Zitat European Union. (2009). Decision no 406/2009/EC of the European parliament and of the council of 23 April 2009 on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020. European Union. (2009). Decision no 406/2009/EC of the European parliament and of the council of 23 April 2009 on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020.
Zurück zum Zitat Eurostat. (2012). Environment and Energy. Retrieved from http//:ec.europa.eu/eurostat Eurostat. (2012). Environment and Energy. Retrieved from http//:ec.europa.eu/eurostat
Zurück zum Zitat G-20 Clean energy Factbook (2010). Who’s winning the clean energy race? - Growth. The Pew Charitable Trusts: Competition and Opportunity in the World’s Largest Economies. G-20 Clean energy Factbook (2010). Who’s winning the clean energy race? - Growth. The Pew Charitable Trusts: Competition and Opportunity in the World’s Largest Economies.
Zurück zum Zitat Gales, B., Kander, A., Malanima, P., & Rubio, M. (2007). North versus south: energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.CrossRef Gales, B., Kander, A., Malanima, P., & Rubio, M. (2007). North versus south: energy transition and energy intensity in Europe over 200 years. European Review of Economic History, 11(2), 219–253.CrossRef
Zurück zum Zitat González, P. F., Landajo, M., & Presno, M. J. (2014a). The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states. Environmental Science & Policy, 38, 11–16. doi:10.1016/j.envsci.2013.10.007. González, P. F., Landajo, M., & Presno, M. J. (2014a). The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states. Environmental Science & Policy, 38, 11–16. doi:10.​1016/​j.​envsci.​2013.​10.​007.
Zurück zum Zitat González, P. F., Landajo, M., & Presno, M. J. (2014b). Tracking European Union CO2 emissions through LDMI (logarithmic-mean divisia índex) decomposition. The activity Revaluation approach. Energy, 73, 741–750. doi:10.1016/j.enpol.2005.02.005. González, P. F., Landajo, M., & Presno, M. J. (2014b). Tracking European Union CO2 emissions through LDMI (logarithmic-mean divisia índex) decomposition. The activity Revaluation approach. Energy, 73, 741–750. doi:10.​1016/​j.​enpol.​2005.​02.​005.
Zurück zum Zitat Greening, L. A., Davis, W. B., Schipper, L., & Khrushch, M. (1997). Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries. Energy Economics, 19(3), 375–390.CrossRef Greening, L. A., Davis, W. B., Schipper, L., & Khrushch, M. (1997). Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries. Energy Economics, 19(3), 375–390.CrossRef
Zurück zum Zitat Greening, L. A., Davis, W., & Schipper, L. (1998). Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971–1991. Energy Economics, 13(3), 43–65.CrossRef Greening, L. A., Davis, W., & Schipper, L. (1998). Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971–1991. Energy Economics, 13(3), 43–65.CrossRef
Zurück zum Zitat Halamay, D.A. and Brekken, T.K.A. (2011). Monte Carlo analysis of the impacts of high renewable power penetration. Energy Conversion Congress and Exposition (ECCE), −IEEE, 3059–3066. Halamay, D.A. and Brekken, T.K.A. (2011). Monte Carlo analysis of the impacts of high renewable power penetration. Energy Conversion Congress and Exposition (ECCE), −IEEE, 3059–3066.
Zurück zum Zitat Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO 2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492–499. doi:10.1016/j.energy.2007.09.014.CrossRef Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2008). CO 2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy, 33(3), 492–499. doi:10.​1016/​j.​energy.​2007.​09.​014.CrossRef
Zurück zum Zitat Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2010). Energy CO2 emissions for 1990–2020: a decomposition analysis for EU-25 and Greece. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(20), 1908–1917. doi:10.1080/15567030902937101.CrossRef Hatzigeorgiou, E., Polatidis, H., & Haralambopoulos, D. (2010). Energy CO2 emissions for 1990–2020: a decomposition analysis for EU-25 and Greece. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(20), 1908–1917. doi:10.​1080/​1556703090293710​1.CrossRef
Zurück zum Zitat Hoekstra, R., & Bergh, J. J. C. J. M. V. D. (2003). Comparing structural and index decomposition analysis. Energy Economics, 25(1), 39–64.CrossRef Hoekstra, R., & Bergh, J. J. C. J. M. V. D. (2003). Comparing structural and index decomposition analysis. Energy Economics, 25(1), 39–64.CrossRef
Zurück zum Zitat Howarth, R., Schipper, L., Duerr, P., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries: decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics, 13(2), 135–142.CrossRef Howarth, R., Schipper, L., Duerr, P., & Strøm, S. (1991). Manufacturing energy use in eight OECD countries: decomposing the impacts of changes in output, industry structure and energy intensity. Energy Economics, 13(2), 135–142.CrossRef
Zurück zum Zitat Intergovernamental Panel on Climate Change. (2000). IPCC Special Report Emissions Scenarios. Intergovernamental Panel on Climate Change. (2000). IPCC Special Report Emissions Scenarios.
Zurück zum Zitat International Energy Agency (2012b). IEA statistics electricity information 2012. Paris. International Energy Agency (2012b). IEA statistics electricity information 2012. Paris.
Zurück zum Zitat International Energy Agency. (2012b). World Energy Outlook 2012a. International Energy Agency. (2012b). World Energy Outlook 2012a.
Zurück zum Zitat International Energy Agency (2013). Energy statistics 2013. Paris. International Energy Agency (2013). Energy statistics 2013. Paris.
Zurück zum Zitat International Panel on Climate Change (2007). Climate change 2007 synthesis report. Geneva. International Panel on Climate Change (2007). Climate change 2007 synthesis report. Geneva.
Zurück zum Zitat Kabouris, J., & Kanellos, F. (2010). Impacts of large scale wind penetration on designing and operation of electric power systems. IEEE Transactions on Sustainable Energy, 1(2), 107–114.CrossRef Kabouris, J., & Kanellos, F. (2010). Impacts of large scale wind penetration on designing and operation of electric power systems. IEEE Transactions on Sustainable Energy, 1(2), 107–114.CrossRef
Zurück zum Zitat Kander, A., Malanima, P., & Warde, P. (2013). Power to the people. Energy in Europe over the last five centuries. Princeton: Princeton University Press. Kander, A., Malanima, P., & Warde, P. (2013). Power to the people. Energy in Europe over the last five centuries. Princeton: Princeton University Press.
Zurück zum Zitat Liaskas, K., Mavrotas, G., Mandaraka, M., & Diakoulaki, D. U. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22(4), 383–394.CrossRef Liaskas, K., Mavrotas, G., Mandaraka, M., & Diakoulaki, D. U. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22(4), 383–394.CrossRef
Zurück zum Zitat Lin, B., & Moubarak, M. (2013). Decomposition analysis: change of carbon dioxide emissions in the Chinese textile industry. Renewable and Sustainable Energy Reviews, 26, 389–396.CrossRef Lin, B., & Moubarak, M. (2013). Decomposition analysis: change of carbon dioxide emissions in the Chinese textile industry. Renewable and Sustainable Energy Reviews, 26, 389–396.CrossRef
Zurück zum Zitat Lindmark, M. (2002). An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecological Economics, 42(1–2), 333–347.CrossRef Lindmark, M. (2002). An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecological Economics, 42(1–2), 333–347.CrossRef
Zurück zum Zitat Luukkanen, J., & Kaivo-oja, J. (2002). Meaningful participation in global climate policy? Comparative analysis of the energy and CO2 efficiency dynamics of key developing countries. Global Environmental Change, 12(2), 117–126.CrossRef Luukkanen, J., & Kaivo-oja, J. (2002). Meaningful participation in global climate policy? Comparative analysis of the energy and CO2 efficiency dynamics of key developing countries. Global Environmental Change, 12(2), 117–126.CrossRef
Zurück zum Zitat Maghyereh, A. (2004). Oil price shocks and emerging stock markets: a generalized VAR approach. International Journal of Applied Econometrics and Quantitative Studies, 1(2), 27–40. Maghyereh, A. (2004). Oil price shocks and emerging stock markets: a generalized VAR approach. International Journal of Applied Econometrics and Quantitative Studies, 1(2), 27–40.
Zurück zum Zitat Factbook, O. E. C. D. (2013). Economic. Environment and Social: Statistics. Factbook, O. E. C. D. (2013). Economic. Environment and Social: Statistics.
Zurück zum Zitat Picazo-Tadeo, A. J., Castillo-Giménez, J., & Beltrán-Esteve, M. (2014). An intertemporal approach to measuring environmental performance with directional distance functions: greenhouse gas emissions in the European Union. Ecological Economics, 100, 173–182.CrossRef Picazo-Tadeo, A. J., Castillo-Giménez, J., & Beltrán-Esteve, M. (2014). An intertemporal approach to measuring environmental performance with directional distance functions: greenhouse gas emissions in the European Union. Ecological Economics, 100, 173–182.CrossRef
Zurück zum Zitat Raupach, M., Marland, G., Ciais, P., Le Quéré, C., Canadell, J., Klepper, G., & Field, C. (2007). Global and regional drivers of accelerating CO2 emissions. In W. C. Clark, Harvard University, & Cambridge MA (Eds.), Proceedings of the National Academy of Sciences of the United States of America (pp. 10288–10293). doi:www.pnas.org/cgi/doi/10.1073/pnas.0700609104 Raupach, M., Marland, G., Ciais, P., Le Quéré, C., Canadell, J., Klepper, G., & Field, C. (2007). Global and regional drivers of accelerating CO2 emissions. In W. C. Clark, Harvard University, & Cambridge MA (Eds.), Proceedings of the National Academy of Sciences of the United States of America (pp. 10288–10293). doi:www.​pnas.​org/​cgi/​doi/​10.​1073/​pnas.​0700609104
Zurück zum Zitat Rose, A., & Casler, S. (1996). Input-output structural decomposition analysis: a critical appraisal. Economic Systems Research, 8(1), 33–62.CrossRef Rose, A., & Casler, S. (1996). Input-output structural decomposition analysis: a critical appraisal. Economic Systems Research, 8(1), 33–62.CrossRef
Zurück zum Zitat Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S., & Unander, F. (2001). Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995. Energy Policy, 29(9), 667–688.CrossRef Schipper, L., Murtishaw, S., Khrushch, M., Ting, M., Karbuz, S., & Unander, F. (2001). Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995. Energy Policy, 29(9), 667–688.CrossRef
Zurück zum Zitat Sun, J. W. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy Economics, 20(1), 85–100.CrossRef Sun, J. W. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy Economics, 20(1), 85–100.CrossRef
Zurück zum Zitat Sun, J. W. (1999). Decomposition of aggregate CO2 emissions in the OECD: 1960–1995. The Energy Journal, 20(3), 147–155.CrossRef Sun, J. W. (1999). Decomposition of aggregate CO2 emissions in the OECD: 1960–1995. The Energy Journal, 20(3), 147–155.CrossRef
Zurück zum Zitat Sun, J. W. (2000). Is CO2 emission intensity comparable? Energy Policy, 28(15), 1081–1084.CrossRef Sun, J. W. (2000). Is CO2 emission intensity comparable? Energy Policy, 28(15), 1081–1084.CrossRef
Zurück zum Zitat Timilsina, G., & Shrestha, A. (2009). Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: an LMDI decomposition analysis. International Journal of Energy Research, 33(4), 396–414. doi:10.1002/er.CrossRef Timilsina, G., & Shrestha, A. (2009). Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: an LMDI decomposition analysis. International Journal of Energy Research, 33(4), 396–414. doi:10.​1002/​er.CrossRef
Zurück zum Zitat Tol, R., Pacala, S., & Socolow, R. (2009). Understanding long-term energy use and carbon dioxide emissions in the USA. Journal of Policy Modelling, 31(3), 425–445.CrossRef Tol, R., Pacala, S., & Socolow, R. (2009). Understanding long-term energy use and carbon dioxide emissions in the USA. Journal of Policy Modelling, 31(3), 425–445.CrossRef
Zurück zum Zitat Torvanger, A. (1991). Manufacturing sector carbon dioxide emissions in nine OECD countries, 1973–87: a divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure. Energy Economics, 13(3), 168–186.CrossRef Torvanger, A. (1991). Manufacturing sector carbon dioxide emissions in nine OECD countries, 1973–87: a divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure. Energy Economics, 13(3), 168–186.CrossRef
Zurück zum Zitat Unander, F., Karbuz, S., Schipper, L., Khrushch, M., & Ting, M. (1999). Manufacturing energy use in OECD countries: decomposition of long-term trends. Energy Policy, 27(13), 769–778.CrossRef Unander, F., Karbuz, S., Schipper, L., Khrushch, M., & Ting, M. (1999). Manufacturing energy use in OECD countries: decomposition of long-term trends. Energy Policy, 27(13), 769–778.CrossRef
Zurück zum Zitat United Nations. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change. United Nations. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change.
Zurück zum Zitat World Bank. (2013). World development indicators. Washington (DC). World Bank. (2013). World development indicators. Washington (DC).
Zurück zum Zitat Wu, L., Kaneko, S., & Matsuoka, S. (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3), 319–335. doi:10.1016/j.enpol.2003.08.003.CrossRef Wu, L., Kaneko, S., & Matsuoka, S. (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3), 319–335. doi:10.​1016/​j.​enpol.​2003.​08.​003.CrossRef
Zurück zum Zitat Zhang, Y., Zhang, J., Yang, Z., & Li, S. (2011). Regional differences in the factors that influence China’ s energy-related carbon emissions, and potential mitigation strategies. Energy Policy, 39(12), 7712–7718. doi:10.1016/j.enpol.2011.09.015.CrossRef Zhang, Y., Zhang, J., Yang, Z., & Li, S. (2011). Regional differences in the factors that influence China’ s energy-related carbon emissions, and potential mitigation strategies. Energy Policy, 39(12), 7712–7718. doi:10.​1016/​j.​enpol.​2011.​09.​015.CrossRef
Metadaten
Titel
Which factors drive CO2 emissions in EU-15? Decomposition and innovative accounting
verfasst von
Victor Moutinho
Mara Madaleno
Pedro Miguel Silva
Publikationsdatum
01.10.2016
Verlag
Springer Netherlands
Erschienen in
Energy Efficiency / Ausgabe 5/2016
Print ISSN: 1570-646X
Elektronische ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-015-9411-x

Weitere Artikel der Ausgabe 5/2016

Energy Efficiency 5/2016 Zur Ausgabe