Skip to main content
Log in

Dealing with spatial data pooled over time in statistical models

  • Original Paper
  • Published:
Letters in Spatial and Resource Sciences Aims and scope Submit manuscript

Abstract

Recent developments in spatial econometrics have been devoted to spatio-temporal data and how spatial panel data structure should be modeled. Little effort has been devoted to the way one must deal with spatial data pooled over time. This paper presents the characteristics of spatial data pooled over time and proposes a simple way to take into account unidirectional temporal effect as well as multidirectional spatial effect in the estimation process. An empirical example, using data on 25,357 single family homes sold in Lucas County, OH (USA), between 1993 and 1998 (available in the MatLab library), is used to illustrate the potential of the approach proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Two observations having the same geographical coordinates.

  2. Except if the panel is unbalanced.

  3. Of course, it can also account for potential anticipation by considering that the first period after may exert influence on the actual observations, as noted by Dubé et al. (2011a).

  4. Of course, the determination of the optimal kernel size remains an important topic that is not explicitly treated in the paper.

  5. Of course, this definition can be extended to include more details such as days \(dd\). The general form of the function can be approximated by \(v_{i} = 365 \times (yyyy_{i}-yyyy_{min}) + 31 \times (mm_{i}-1) + dd_{i}\), assuming that a difference of a few days does not affect the structure of the matrix since the months do not have the same number of days.

  6. The definition of the temporal weights matrix generalizes the specification of Pace et al. (1998, 2000) and Smith and Wu (2009).

  7. As is the case for the definition of the spatial relation, \(s_{ij}\), in Eq. (2), \(\gamma \) usually takes a value 0, 1 or 2.

  8. The definition uses absolute values to ensure that the matrix \(T\) has non-negative values since the difference in date of observation gives non-symmetric measures. Such specification ensures that the temporal weights matrix is also symmetric.

  9. Defining a term by term multiplication of matrices and noted \(\odot \).

  10. \(w_{ij} = s_{ij} \times t_{ij}\).

  11. The optimal impact of the age on house prices can be obtained by: \(\beta _{log(age)} \times (-1/\beta _{age})\).

  12. The general form of the matrix is \(W_{0} = S_{0} \odot T_{0}\). The matrix \(W_{0}\) is used to detect spatial autocorrelation pattern among residuals using the Moran’s \(I\) index.

  13. The estimation routines developed in MatLab by Lesage (1999), based on maximum likelihood is used to estimate the model using the spatio-temporal weights matrix instead of the spatial weights matrix. The SEM specification is used since the dynamic time lagged variables represent a special case of spatial autoregressive (SAR) model and fail to control adequately for spatial autocorrelation.

  14. The spatio-temporal weights matrix used is the same that previously served to calculate the Moran’s \(I\) index: \(W_{0}= S_{0}\odot T_{0}\).

References

  • Anselin, L.: Spatial econometrics in RSUE: retrospect and prospect. Reg. Sci. Urban Econ. 37, 450–456 (2007)

    Article  Google Scholar 

  • Anselin, L., Syabri, I., Kho, Y.: GeoDa: an introduction to spatial data analysis. Geogr. Anal. 38, 5–22 (2006)

    Article  Google Scholar 

  • Boots, B.N., Dufournaud, C.: A programming approach to minimizing and maximizing spatial autocorrelation statistics. Geogr. Anal. 26, 54–66 (1994)

    Article  Google Scholar 

  • Des Rosiers, F., Lagana, M., Theriault, M., Beaudoin, M.: Shopping centres and house values: an empirical investigation. J. Prop. Valuat. Invest. 14(4), 41–62 (1996)

    Article  Google Scholar 

  • Des Rosiers, F., Lagana, A., Thériault, M.: Size and proximity effects of primary schools on surronding house values. J. Prop. Res. 18(2), 1–20 (2001)

    Google Scholar 

  • Des Rosiers, F., Dubé, J., Thériault, M.: Do peer effects shape property values? J. Prop. Invest. Fin. 29(4/5), 510–528 (2011)

    Article  Google Scholar 

  • Dubé, J., Legros, D.: A spatio-temporal measure of spatial dependence: an example using real estate data. Pap. Reg. Sci. (2012, forthcoming)

  • Dubé, J., Baumont, C., Legros, D.: Utilisation des matrices de pondérations en économétrie spatiale: Proposition dans un contexte spatio-temporel. Documents de travail du Laboratoire d’Économie et de Gestion (LEG), Université de Bourgogne, e2011-01 (2011a)

  • Dubé, J., Des Rosiers, F., Thériault, M.: Impact de la segmentation spatiale sur le choix de la forme fonctionnelle pour la modélisation hédonique. Revue d’Economie Régionale et Urbaine 1, 9–37 (2011b)

    Google Scholar 

  • Dubé, J., Des Rosiers, F., Thériault, M., Dib, P.: Economic impact of a supply change in mass transit in urban areas: a Canadian example. Transport. Res. 45, 46–62 (2011c)

  • Elhorst, J.P.: Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 26(3), 244–268 (2003)

    Article  Google Scholar 

  • Fingleton, B.: Spurious spatial regression: some Monte Carlo results with a spatial unit root and spatial cointegration. J. Reg. Sci. 39(1), 1–19 (1999)

    Article  Google Scholar 

  • Fingleton, B.: Spatial autoregression. Geogr. Anal. 41, 385–391 (2009)

    Article  Google Scholar 

  • Getis, A.: Spatial weights matrices. Geogr. Anal. 41, 404–410 (2009)

    Article  Google Scholar 

  • Getis, A., Aldstadt, J.: Constructing the spatial weights matrix using a local statistic. Geogr. Anal. 36, 90–104 (2004)

    Article  Google Scholar 

  • Griffith, D.A.: Modelling urban population density in a multi-centered city. J. Urban Econ. 9(3), 298–310 (1981)

    Article  Google Scholar 

  • Griffith, D.A.: Some guidelines for specifying the geographic weights matrix contained in spatial statistical modelschap. In: Pratical Handbook of Spatial Statistics, pp. 82–148. CRC Press, Boca Raton (1996)

  • Hägerstrand, T.: What about people in regional science? Pap. Reg. Sci. Assoc. 24(1), 7–21 (1970)

    Article  Google Scholar 

  • Huang, B., Huang, W., Barry, M.: Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 24(3), 383–401 (2010)

    Article  Google Scholar 

  • Lee, L.F., Yu, J.: Spatial monstationarity and spurious regression: the case with row-normalized spatial weights matrix. Spatial Econ. Anal. 4 (2009, forthcoming)

  • LeGallo, J.: Econométrie spatiale: l’autocorrélation spatiale dans les modèles de régression linéaire. Economie et Prévision 155, 139–157 (2002)

    Google Scholar 

  • Legendre, P.: Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673 (1993)

    Article  Google Scholar 

  • Lesage, J.P.: Spatial Econometrics. The Web Book of Regional Science, Regional Research Institute, West Virginia University, Morgantown (1999)

  • Lesage, J.P., Pace, R.K.: Models for spatially dependent missing data. J. Real Estate Fin. Econ. 29, 233–254 (2004)

    Article  Google Scholar 

  • Lesage, J.P., Pace, K.R.: Introduction to Spatial Econometrics. Chapman and Hall/CRC, London (2009)

    Book  Google Scholar 

  • Monteiro, J.-A., Kukenova, M.: Spatial Dynamic Panel Model and System GMM: A Monte Carlo Investigation. IRENE Working Papers 09-01, IRENE Institute of Economic Research (2009)

  • Nappi-Choulet, I., Maury, T.-P.: A spatiotemporal autoregressive price index for the Paris office property market. Real Estate Econ. 37(2), 305–340 (2009)

    Article  Google Scholar 

  • Nappi-Choulet, I., Maury, T.-P.: A spatial and temporal autoregressive local estimation for the Paris housing market. J. Reg. Sci. 51(4), 732–750 (2011)

    Article  Google Scholar 

  • Pace, K.R., Barry, R., Clapp, J.M., Rodriguez, M.: Spatiotemporal autoregressive models of neighborhood effects. J. Real Estate Fin. Econ. 17(1), 15–33 (1998)

    Article  Google Scholar 

  • Pace, K.R., Barry, R., Gilley, W.O., Sirmans, C.F.: A method for spatial–temporal forecasting with an application to real estate prices. Int. J. Forecast. 16, 229–246 (2000)

    Article  Google Scholar 

  • Parent, O., Lesage, J.P.: A Spatial Dynamic Panel Model with Random Effects Applied to Commuting Times. University of Cincinnati, Economics Working Papers Series 2010-01. University of Cincinnati, Department of Economics (2010)

  • Parent, O., Lesage, J.P.: A space–time filter for panel data models containing random effects. Comput. Stat. Data Anal. 55(1), 475–490 (2011)

    Article  Google Scholar 

  • Rosen, S.: Hedonic prices and implicit markets: product differentiation in pure competition. J. Political Econ. 82(1), 34–55 (1974)

    Article  Google Scholar 

  • Smith, T.E., Wu, P.: A spatio-temporal model of housing prices based on individual sales transactions over time. J. Geogr. 11(4), 333–355 (2009)

    Google Scholar 

  • Sun, H., Tu, Y.: A spatio-temporal autoregressive model for multi-unit residential market analyis. J. Real Estate Fin. Econ. 31(2), 155–187 (2005)

    Article  Google Scholar 

  • Tobler, W.: A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46(2), 234–240 (1970)

    Article  Google Scholar 

  • Tu, Y., Yu, S.-M., Sun, H.: Transaction-based office price indexes: A spatiotemporal modeling approach. Real Estate Econ. 32, 297–328 (2004)

    Google Scholar 

  • Wooldridge, J.M.: Introductory econometrics: a modern approach. South-Western College Publishing, Cincinnati (2000)

  • Wooldridge, J.M.: Econometric analysis of cross section and panel data. The MIT Press, Cambridge (2002)

  • Yu, J., Lee, L.-F.: Estimation of unit root spatial dynamic panel data models. Econ. Theory 26(05), 1332–1362 (2010)

    Article  Google Scholar 

  • Yu, J., de Jong, R., Lee, L.-F.: Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. J. Econ. 146(1), 118–134 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dubé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubé, J., Legros, D. Dealing with spatial data pooled over time in statistical models. Lett Spat Resour Sci 6, 1–18 (2013). https://doi.org/10.1007/s12076-012-0082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12076-012-0082-3

Keywords

JEL Classification

Navigation