Skip to main content
Erschienen in: Peer-to-Peer Networking and Applications 3/2019

16.04.2018

Multi working sets alternate covering scheme for continuous partial coverage in WSNs

verfasst von: Mingfeng Huang, Anfeng Liu, Ming Zhao, Tian Wang

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coverage of wireless sensor networks is a fundamental problem which has been studied for more than two decades. In duty cycle based wireless sensor networks, the nodes are sleep/wake periodic working, and the sleeping of nodes selected to achieve coverage results in a lack of network coverage, which make the coverage of the research difficult to apply in practice. In this paper, a Multi Working Sets Alternate Covering (MWSAC) scheme is proposed to achieve continuous partial coverage of the network. Firstly, a distributed algorithm is proposed to construct the maximum number of working sets, each working set is required to satisfy the partial coverage requirement of the application. Then, the sleeping time of the working nodes is scheduled, which makes the nodes belonging to the same working set wake up synchronously and nodes between multiple working sets wake up asynchronously. Thus, at any time, as long as the nodes of one working set are in waking state, the nodes of other working sets are adjusted to sleeping state to save energy. Due to multiple working sets are alternately covered under MWSAC, the workload and wake-up time of each working node is greatly reduced, which makes the energy consumption more balanced and the network lifetime longer. Both the theoretical analysis and the experimental results show that, compared with the previous continuous coverage scheme, MWSAC scheme has obvious advantages in terms of coverage, network lifetime and node utilization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat He S, Chen J, Li X et al (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282CrossRef He S, Chen J, Li X et al (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282CrossRef
4.
Zurück zum Zitat Liu X (2017) Survivability-aware connectivity restoration for partitioned wireless sensor networks. IEEE Commun Lett 21(11):2444–2447CrossRef Liu X (2017) Survivability-aware connectivity restoration for partitioned wireless sensor networks. IEEE Commun Lett 21(11):2444–2447CrossRef
5.
Zurück zum Zitat Zeng D, Li P, Guo S et al (2015) Energy minimization in multi-task software-defined sensor networks. IEEE Trans Comput 64(11):3128–3139MathSciNetCrossRefMATH Zeng D, Li P, Guo S et al (2015) Energy minimization in multi-task software-defined sensor networks. IEEE Trans Comput 64(11):3128–3139MathSciNetCrossRefMATH
9.
Zurück zum Zitat Xin H, Liu X (2017) Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access 5:16193–16204CrossRef Xin H, Liu X (2017) Energy-balanced transmission with accurate distances for strip-based wireless sensor networks. IEEE Access 5:16193–16204CrossRef
11.
Zurück zum Zitat Li H, Liu D, Dai Y, Luan TH (2015) Engineering searchable encryption of mobile cloud networks: when qoe meets qop. IEEE Wirel Commun 22(4):74–80CrossRef Li H, Liu D, Dai Y, Luan TH (2015) Engineering searchable encryption of mobile cloud networks: when qoe meets qop. IEEE Wirel Commun 22(4):74–80CrossRef
12.
Zurück zum Zitat Liu X (2017) Node deployment based on extra path creation for wireless sensor networks on mountain roads. IEEE Commun Lett 21(11):2376–2379CrossRef Liu X (2017) Node deployment based on extra path creation for wireless sensor networks on mountain roads. IEEE Commun Lett 21(11):2376–2379CrossRef
13.
Zurück zum Zitat Li H, Yang Y, Luan TH, Liang X, Zhou L, Shen XS (2016) Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans Dependable Secure Comput 13(3):312–325CrossRef Li H, Yang Y, Luan TH, Liang X, Zhou L, Shen XS (2016) Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans Dependable Secure Comput 13(3):312–325CrossRef
14.
Zurück zum Zitat Wang T, Peng Z, Liang J et al (2014) Following targets for mobile tracking in wireless sensor networks. ACM Trans Sensor Netw 12(4):31.1–31.24 Wang T, Peng Z, Liang J et al (2014) Following targets for mobile tracking in wireless sensor networks. ACM Trans Sensor Netw 12(4):31.1–31.24
15.
Zurück zum Zitat Zeng D, Gu L, Lian L et al (2016) On cost-efficient sensor placement for contaminant detection in water distribution systems. IEEE Trans Industrial Inform 12(6):2177–2185CrossRef Zeng D, Gu L, Lian L et al (2016) On cost-efficient sensor placement for contaminant detection in water distribution systems. IEEE Trans Industrial Inform 12(6):2177–2185CrossRef
16.
Zurück zum Zitat Wang T, Wu Q, Wen S et al (2017) Propagation modeling and defending of mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1):139CrossRef Wang T, Wu Q, Wen S et al (2017) Propagation modeling and defending of mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1):139CrossRef
17.
Zurück zum Zitat Karyakarte MS, Tavildar AS, Khanna R (2017) Dynamic node deployment and cross layer opportunistic robust routing for PoI coverage using WSNs. Wirel Pers Commun 96(2):2741–2759CrossRef Karyakarte MS, Tavildar AS, Khanna R (2017) Dynamic node deployment and cross layer opportunistic robust routing for PoI coverage using WSNs. Wirel Pers Commun 96(2):2741–2759CrossRef
18.
Zurück zum Zitat Li H, Lin X, Yang H, Liang X, Lu R, Shen X (2014) EPPDR: an efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid. IEEE Trans Parallel Distrib Syst 25(8):2053–2064CrossRef Li H, Lin X, Yang H, Liang X, Lu R, Shen X (2014) EPPDR: an efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid. IEEE Trans Parallel Distrib Syst 25(8):2053–2064CrossRef
19.
Zurück zum Zitat Tian D, Georganas ND (2003) A node scheduling scheme for energy conservation in large wireless sensor networks. Wirel Commun Mob Comput 3(2):271–290CrossRef Tian D, Georganas ND (2003) A node scheduling scheme for energy conservation in large wireless sensor networks. Wirel Commun Mob Comput 3(2):271–290CrossRef
22.
Zurück zum Zitat Li M, Cheng W, Liu K et al (2011) Sweep coverage with mobile sensors. IEEE Trans Mob Comput 10(11):1534–1545CrossRef Li M, Cheng W, Liu K et al (2011) Sweep coverage with mobile sensors. IEEE Trans Mob Comput 10(11):1534–1545CrossRef
23.
Zurück zum Zitat Slijepcevic S, Potkonjak M (2001) Power efficient organization of wireless sensor networks. IEEE international conference on. Communications 2:472–476 Slijepcevic S, Potkonjak M (2001) Power efficient organization of wireless sensor networks. IEEE international conference on. Communications 2:472–476
24.
Zurück zum Zitat Cardei M, Du DZ (2005) Improving wireless sensor network lifetime through power aware organization. Wirel Netw 11(3):333−340CrossRef Cardei M, Du DZ (2005) Improving wireless sensor network lifetime through power aware organization. Wirel Netw 11(3):333−340CrossRef
25.
Zurück zum Zitat Zorbas D, Glynos D, Kotzanikolaou P et al (2010) Solving coverage problems in wireless sensor networks using cover sets. Ad Hoc Netw 8(4):400–415CrossRef Zorbas D, Glynos D, Kotzanikolaou P et al (2010) Solving coverage problems in wireless sensor networks using cover sets. Ad Hoc Netw 8(4):400–415CrossRef
26.
Zurück zum Zitat Yang Q, He S, Li J et al (2015) Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Trans Veh Technol 64(1):367–377CrossRef Yang Q, He S, Li J et al (2015) Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Trans Veh Technol 64(1):367–377CrossRef
27.
Zurück zum Zitat Dobrev S, Durocher S, Eftekhari M et al (2015) Complexity of barrier coverage with relocatable sensors in the plane. Theor Comput Sci 579:64–73MathSciNetCrossRefMATH Dobrev S, Durocher S, Eftekhari M et al (2015) Complexity of barrier coverage with relocatable sensors in the plane. Theor Comput Sci 579:64–73MathSciNetCrossRefMATH
28.
Zurück zum Zitat Zhao MC, Lei J, Wu MY et al. (2009) Surface coverage in wireless sensor networks. INFOCOM 2009, IEEE 109–117 Zhao MC, Lei J, Wu MY et al. (2009) Surface coverage in wireless sensor networks. INFOCOM 2009, IEEE 109–117
29.
Zurück zum Zitat Zhang C, Bai X, Teng J et al (2010) Constructing low-connectivity and full-coverage three dimensional sensor networks. IEEE J Select Areas Commun 28(7):984–993CrossRef Zhang C, Bai X, Teng J et al (2010) Constructing low-connectivity and full-coverage three dimensional sensor networks. IEEE J Select Areas Commun 28(7):984–993CrossRef
30.
Zurück zum Zitat Chakrabarty K, Iyengar SS, Qi H et al (2002) Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans Comput 51(12):1448–1453MathSciNetCrossRefMATH Chakrabarty K, Iyengar SS, Qi H et al (2002) Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans Comput 51(12):1448–1453MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ghosh A, Das SK (2005) A distributed greedy algorithm for connected sensor cover in dense sensor networks. DCOSS 3560:340–353 Ghosh A, Das SK (2005) A distributed greedy algorithm for connected sensor cover in dense sensor networks. DCOSS 3560:340–353
32.
Zurück zum Zitat Hochbaum DS, Pathria A (1998) Analysis of the greedy approach in problems of maximum k-coverage. Nav Res Logist 45(6):615–627MathSciNetCrossRefMATH Hochbaum DS, Pathria A (1998) Analysis of the greedy approach in problems of maximum k-coverage. Nav Res Logist 45(6):615–627MathSciNetCrossRefMATH
33.
Zurück zum Zitat Megerian S, Koushanfar F, Potkonjak M et al (2005) Worst and best-case coverage in sensor networks. IEEE Trans Mob Comput 4(1):84–92CrossRef Megerian S, Koushanfar F, Potkonjak M et al (2005) Worst and best-case coverage in sensor networks. IEEE Trans Mob Comput 4(1):84–92CrossRef
34.
Zurück zum Zitat Tian D, Georganas ND (2002) A coverage-preserving node scheduling scheme for large wireless sensor networks. Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, Atlanta, p 32–41 Tian D, Georganas ND (2002) A coverage-preserving node scheduling scheme for large wireless sensor networks. Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, Atlanta, p 32–41
35.
Zurück zum Zitat Sengupta S, Das S, Nasir M et al (2012) An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans Syst Man Cybern 42(6):1093–1102CrossRef Sengupta S, Das S, Nasir M et al (2012) An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans Syst Man Cybern 42(6):1093–1102CrossRef
36.
Zurück zum Zitat Zhu C, Yang LT, Shu L et al (2014) Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Trans Ind Electron 61(11):6346–6355CrossRef Zhu C, Yang LT, Shu L et al (2014) Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Trans Ind Electron 61(11):6346–6355CrossRef
37.
Zurück zum Zitat Liu A, Chen Z, Xiong NN (2017) An adaptive virtual relaying set scheme for loss-and-delay sensitive WSNs. Inf Sci 424:118–136MathSciNetCrossRef Liu A, Chen Z, Xiong NN (2017) An adaptive virtual relaying set scheme for loss-and-delay sensitive WSNs. Inf Sci 424:118–136MathSciNetCrossRef
39.
Zurück zum Zitat Mostafaei H, Montieri A, Persico V et al (2017) A sleep scheduling approach based on learning automata for WSN partial coverage. J Netw Comput Appl 80:67–78CrossRef Mostafaei H, Montieri A, Persico V et al (2017) A sleep scheduling approach based on learning automata for WSN partial coverage. J Netw Comput Appl 80:67–78CrossRef
40.
Zurück zum Zitat He S, Shin DH, Zhang J et al (2016) Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions. IEEE Trans Veh Technol 65(9):7448–7461CrossRef He S, Shin DH, Zhang J et al (2016) Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions. IEEE Trans Veh Technol 65(9):7448–7461CrossRef
41.
Zurück zum Zitat Liu X, Liu A, Li Z et al (2017) Distributed cooperative communication nodes control and optimization reliability for resource-constrained WSNs. Neurocomputing 270:122–136CrossRef Liu X, Liu A, Li Z et al (2017) Distributed cooperative communication nodes control and optimization reliability for resource-constrained WSNs. Neurocomputing 270:122–136CrossRef
Metadaten
Titel
Multi working sets alternate covering scheme for continuous partial coverage in WSNs
verfasst von
Mingfeng Huang
Anfeng Liu
Ming Zhao
Tian Wang
Publikationsdatum
16.04.2018
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 3/2019
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-018-0647-z

Weitere Artikel der Ausgabe 3/2019

Peer-to-Peer Networking and Applications 3/2019 Zur Ausgabe