Skip to main content

Advertisement

Log in

Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biodiesel has been recognized as a good source of energy and its production is increasing rapidly. During biodiesel production, effluent containing 70–75 % glycerol is generated, which accounts for 10 % of the total produce. This has led to a scenario where the price of glycerol has declined dramatically and its disposal is becoming uneconomical. Recent efforts to extend the biotechnological applications of glycerol for producing hydrogen and polyhydroxyalkanoates have been quite encouraging. Bacillus spp. are among those few organisms, which have the potential to metabolize glycerol to produce energy and biopolymers. Bacillus may thus be recognized as the Power-Horse of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190. doi:10.1016/j.biortech.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  2. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi:10.1007/s10295-007-0300-y

    Article  CAS  PubMed  Google Scholar 

  3. Maru BT, Bielen AAM, Kengen SWM, Constantí M, Medina F (2012) Biohydrogen production from glycerol using Thermotoga spp. Energy Procedia 29:300–307. doi:10.1016/j.egypro.2012.09.036

    Article  CAS  Google Scholar 

  4. Maru BT, Bielen AAM, Constantí M, Medina F, Kengen SWM (2013) Glycerol fermentation to hydrogen by Thermotoga maritima: proposed pathway and bioenergetic considerations. Int J Hydrogen Energy 38:5563–5572. doi:10.1016/j.ijhydene.2013.02.130

    Article  CAS  Google Scholar 

  5. Tan HW, Abdul Aziz AR, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev 27:118–127. doi:10.1016/j.rser.2013.06.035

    Article  CAS  Google Scholar 

  6. Wang C, Dou B, Chen H, Song Y, Xu Y, Du X, Zhang L, Luo T, Tan C (2013) Renewable hydrogen production from steam reforming of glycerol by Ni–Cu–Al, Ni–Cu–Mg, Ni–Mg catalysts. Int J Hydrogen Energy 38:3562–3571. doi:10.1016/j.ijhydene.2013.01.042

    Article  CAS  Google Scholar 

  7. Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48. doi:10.1016/s0141-0229(98)00156-2

    Article  CAS  PubMed  Google Scholar 

  8. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49. doi:10.1016/S0960-8524(01)00149-3

    Article  CAS  PubMed  Google Scholar 

  9. Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79:1189–1196. doi:10.1002/jctb.1103

    Article  CAS  Google Scholar 

  10. Wang K, Wang X, Xizhen G, Tian P (2012) Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol. Indian J Microbiol 52:478–483. doi:10.1007/s12088-012-0280-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li Y, Ge X, Tian P (2013) Gene arrangements in expression vector affect 3-hydroxypropionic acid production in Klebsiella pneumoniae. Indian J Microbiol 53:418–424. doi:10.1007/s12088-013-0390-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:13. doi:10.1186/1754-6834-5-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829. doi:10.1002/bit.21025

    Article  CAS  PubMed  Google Scholar 

  14. Sharninghausen LS, Campos J, Manas MG, Crabtree RH (2014) Efficient selective and atom economic catalytic conversion of glycerol to lactic acid of glycerol to lactic acid. Nat Commun 5:5084. doi:10.1038/ncomms6084

    Article  CAS  PubMed  Google Scholar 

  15. Liu B, Christiansen K, Parnas R, Xu Z, Li B (2013) Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. Int J Hydrogen Energy 38:3196–3205. doi:10.1016/j.ijhydene.2012.12.135

    Article  CAS  Google Scholar 

  16. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi:10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  17. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi:10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  18. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  19. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi:10.1007/s12088-012-0287-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  21. Kivistö A, Santala V, Karp M (2010) Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 101:8671–8677. doi:10.1016/j.biortech.2010.06.066

    Article  PubMed  Google Scholar 

  22. Lo YC, Chen XJ, Huang CY, Yuan YJ, Chang JS (2013) Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. Int J Hydrogen Energy 38:15815–15822. doi:10.1016/j.ijhydene.2013.05.083

    Article  CAS  Google Scholar 

  23. Maru BT, Constanti M, Stchigel AM, Medina F, Sueiras JE (2013) Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter sp. Biotechnol Prog 29:31–38. doi:10.1002/btpr.1644

    Article  CAS  PubMed  Google Scholar 

  24. Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Rabeb L, Soccol CR, Naceur M, Rachid B (2013) Evaluation of different supplementary nutrients for enhanced biohydrogen production by Enterobacter aerogenes NRRL B 407 using waste derived crude glycerol. Int J Hydrogen Energy 38:2191–2198. doi:10.1016/j.ijhydene.2012.11.110

    Article  CAS  Google Scholar 

  25. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265. doi:10.1263/jbb.100.260

    Article  CAS  PubMed  Google Scholar 

  26. Jitrwung R, Yargeau V (2011) Optimization of media composition for the production of biohydrogen from waste glycerol. Int J Hydrogen Energy 36:9602–9611. doi:10.1016/j.ijhydene.2011.05.092

    Article  CAS  Google Scholar 

  27. Markov SA, Averitt J, Waldron B (2011) Bioreactor for glycerol conversion into H2 by bacterium Enterobacter aerogenes. Int J Hydrogen Energy 36:262–266. doi:10.1016/j.ijhydene.2010.09.090

    Article  CAS  Google Scholar 

  28. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. doi:10.1128/AEM.02192-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kivistö A, Santala V, Karp M (2011) Closing the 1,3-propanediol route enhances hydrogen production from glycerol by Halanaerobium saccharolyticum subsp. saccharolyticum. Int J Hydrogen Energy 36:7074–7080. doi:10.1016/j.ijhydene.2011.03.012

    Article  Google Scholar 

  30. Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl Microbiol Biotechnol 50:24–29. doi:10.1007/s002530051251

    Article  CAS  PubMed  Google Scholar 

  31. Ngo TA, Kim MS, Sim SJ (2011) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 36:5836–5842. doi:10.1016/j.ijhydene.2010.11.057

    Article  CAS  Google Scholar 

  32. Reungsang A, Sittijunda S, Angelidaki I (2013) Simultaneous production of hydrogen and ethanol from waste glycerol by Enterobacter aerogenes KKU-S1. Int J Hydrogen Energy 38:1813–1825. doi:10.1016/j.ijhydene.2012.11.062

    Article  CAS  Google Scholar 

  33. Liu F, Fang B (2007) Optimization of biohydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnol J 2:374–380. doi:10.1002/biot.200600102

    Article  CAS  PubMed  Google Scholar 

  34. Wu KJ, Lin YH, Lo YC, Chen CY, Chen WM, Chang JS (2011) Converting glycerol into hydrogen, ethanol, and diols with a Klebsiella sp. HE1 strain via anaerobic fermentation. J Taiwan Inst Chem Eng 42:20–25. doi:10.1016/j.jtice.2010.04.005

    Article  CAS  Google Scholar 

  35. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104:1098–1106. doi:10.1002/bit.22487

    Article  CAS  PubMed  Google Scholar 

  36. Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Soccol CR (2014) Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol—a novel approach for enhanced biohydrogen production from the biodiesel industry waste. Bioresour Technol 151:49–53. doi:10.1016/j.biortech.2013.10.042

    Article  CAS  PubMed  Google Scholar 

  37. Varrone C, Liberatore R, Crescenzi T, Izzo G, Wang A (2013) The valorization of glycerol: economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen. Appl Energy 105:349–357. doi:10.1016/j.apenergy.2013.01.015

    Article  CAS  Google Scholar 

  38. Seifert K, Waligorska M, Wojtowski M, Laniecki M (2009) Hydrogen generation from glycerol in batch fermentation process. Int J Hydrogen Energy 34:3671–3678. doi:10.1016/j.ijhydene.2009.02.045

    Article  CAS  Google Scholar 

  39. Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR (2012) Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrogen Energy 37:6473–6490. doi:10.1016/j.ijhydene.2012.01.050

    Article  CAS  Google Scholar 

  40. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on lignocellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. doi:10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  41. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. doi:10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  42. Heyndrickx M, De Vos P, Vancanneyt M, De Ley J (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34:637–642. doi:10.1007/BF00167914

    Article  CAS  Google Scholar 

  43. Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresour Technol 100:3043–3047. doi:10.1016/j.biortech.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  44. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi:10.1007/s12088-014-0457-9

    Article  CAS  PubMed  Google Scholar 

  45. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi:10.1007/s12088-014-0467-7

    Article  PubMed  Google Scholar 

  46. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi:10.1016/j.biortech.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  47. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi:10.3109/1040841X.2010.532479

    Article  CAS  PubMed  Google Scholar 

  49. Naranjo JM, Posada JA, Higuita JC, Cardona CA (2013) Valorization of glycerol through the production of biopolymers: the PHA case using Bacillus megaterium. Bioresour Technol 133:38–44. doi:10.1016/j.biortech.2013.01.129

    Article  CAS  PubMed  Google Scholar 

  50. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi:10.1186/1475-2859-8-38

    Article  PubMed Central  PubMed  Google Scholar 

  51. Reddy SV, Thirumala M, Mahmood SK (2009) Production of PHA and P (3HB-co-3HV) biopolymers by Bacillus megaterium strain OU303A isolated from municipal sewage sludge. World J Microbiol Biotechnol 25:391–397. doi:10.1007/s11274-008-9903-3

    Article  Google Scholar 

  52. Reddy SV, Thirumala M, Mahmood SK (2009) A novel Bacillus sp. accumulating poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon substrate. J Ind Microbiol Biotechnol 36:837–843. doi:10.1007/s10295-009-0561-8

    Article  CAS  PubMed  Google Scholar 

  53. López JA, Naranjo JM, Higuita JC, Cubitto MA, Cardona CA, Villar MA (2012) Biosynthesis of PHA from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng 17:250–258. doi:10.1007/s12257-011-0448-1

    Article  Google Scholar 

  54. Rohini D, Phadnis S, Rawal SK (2006) Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian J Biotechnol 5:276–283

    CAS  Google Scholar 

  55. Cavalheiro J, De Almeida A, Grandfils C, Da Fonseca MMR (2009) Poly(3 hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515. doi:10.1016/j.procbio.2009.01.008

    Article  CAS  Google Scholar 

  56. Gözke G, Prechtl C, Kirschhöfer F, Mothes G, Ondruschka J, Brenner-Weiss G, Obst U, Posten C (2012) Electrofiltration as a purification strategy for microbial poly-(3-hydroxybutyrate). Bioresource Technol 123:272–278. doi:10.1016/j.biortech.2012.07.039

    Article  Google Scholar 

  57. Reddy CSK, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi:10.1016/S0960-8524(02)00212-2

    Article  CAS  PubMed  Google Scholar 

  58. de Almeida A, Giordano AM, Nikel PI, Pettinari MJ (2010) Effects of aeration on the synthesis of poly (3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76:2036–2040. doi:10.1128/AEM.02706-09

    Article  PubMed Central  PubMed  Google Scholar 

  59. Ashby RD, Solaiman DK, Foglia TA (2004) Bacterial poly (hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112. doi:10.1023/B:JOOE.0000038541.54263.d9

    Article  CAS  Google Scholar 

  60. Ashby RD, Solaiman DK, Strahan GD (2011) Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly (3-hydroxybutyrate) biopolymers. J Am Oil Chem Soc 88:949–959. doi:10.1007/s11746-011-1755-6

    Article  CAS  Google Scholar 

  61. Nikel PI, Pettinari MJ, Galvagno MA, Méndez BS (2008) Poly (3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl Microbiol Biotechnol 77:1337–1343. doi:10.1007/s00253-007-1255-7

    Article  PubMed  Google Scholar 

  62. Full TD, Jung DO, Madigan MT (2006) Production of poly-β-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Lett Appl Microbiol 43:377–384. doi:10.1111/j.1472-765X.2006.01981.x

    Article  CAS  PubMed  Google Scholar 

  63. Sangkharak K, Prasertsan P (2012) Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. J Gen Appl Microbiol 58:173–182. doi:10.2323/jgam.58.173

    Article  CAS  PubMed  Google Scholar 

  64. Sindhu R, Ammu B, Binod P, Deepthi SK, Ramachandran KB, Soccol CR, Pandey A (2011) Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Braz Arch Biol Technol 54:783–794. doi:10.1590/S1516-89132011000400019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, CSIR-WUM (ESC0108) Government of India for providing necessary funds and facilities. P.K. is thankful to CSIR for granting Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Mehariya, S., Ray, S. et al. Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers. Indian J Microbiol 55, 1–7 (2015). https://doi.org/10.1007/s12088-014-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0509-1

Keywords

Navigation