Skip to main content
Log in

Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV–visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM–EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta S, Sharma K, Sharma R (2012) Myconanotechnology and application of nanoparticles in biology. Recent Res Sci Technol 4:36–38

    CAS  Google Scholar 

  2. Gong P, Li H, He X, Wang K, Hu J, Tan W (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:604–611. doi:10.1088/0957-4484/18/28/285604

    Google Scholar 

  3. Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4:45–50

    Google Scholar 

  4. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B Biointerfaces 82:152–159. doi:10.1016/j.colsurfb.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  5. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246. doi:10.1007/s11051-009-9602-5

    Article  CAS  Google Scholar 

  6. Prakasham RS, Kumar BS, Kumar YS, Kumar KP (2014) Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J Microbiol 54:329–336. doi:10.1007/s12088-014-0452-1

    Article  CAS  PubMed  Google Scholar 

  7. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming Uropathogens. Indian J Microbiol 54:365–368. doi:10.1007/s12088-014-0462-z

    Article  CAS  PubMed  Google Scholar 

  8. Dinesh S, Karthikeyan S, Arumugam P (2012) Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch Appl Sci Res 4:78–187

    Google Scholar 

  9. Loo YY, Chieng BW, Nishibuchi M, Radu S (2012) Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomed 7:4263–4267. doi:10.2147/IJN.S33344

    CAS  Google Scholar 

  10. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:283–296. doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  11. Mohanpuria P, Rana KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517. doi:10.1007/s11051-007-9275-x

    Article  CAS  Google Scholar 

  12. Gupta K, Barua S, Hazarika SN, Manhar AK, Nath D, Karak N, Namsa ND, Mukhopadhyay R, Kalia VC, Mandal M (2014) Green silver nanoparticles: enhanced antimicrobial and antibiofilm activity with effects on DNA replication and cell cytotoxicity. RSC Adv 4:52845–52855. doi:10.1039/C4RA08791G

    Article  CAS  Google Scholar 

  13. Velmurugan P, Iydroose M, Lee SM, Cho M, Park JH, Balachandar V, Oh BT (2014) Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54:196–202. doi:10.1007/s12088-013-0437-5

    Article  CAS  PubMed  Google Scholar 

  14. Mahanty A, Mishra S, Bosu R, Maurya UK, Netam SP, Sarkar B (2013) Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J Microbiol 53:438–446. doi:10.1007/s12088-013-0409-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ganzera M, Egger CH, Zidorn CH, Stuppner H (2008) Quantitative analysis of flavaonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography. Anal Chim Acta 614:196–200. doi:10.1016/j.aca.2008.03.023

    Article  CAS  PubMed  Google Scholar 

  16. Sugier D, Gawlik-Dziki U (2009) The influence of foliar fertilization on yielding and quality of mountain arnica (Arnica montana L.) and chamisso arnica (Arnica chamissonis varfoliosa). Ann UMCS Sect E 64:129–139. doi:10.1155/2013/414363

    Google Scholar 

  17. Gawlik-Dziki U, Świeca M, Sugier D, Cichocka J (2011) Comparison of in vitro lipoxygenase, xanthine oxidase inhibitory and antioxidant activity of Arnica Montana and Arnica chamissonis tinctures. Acta Sci Polon Hortorum Cultus 10:15–27

    Google Scholar 

  18. Patel SK, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK (2014) Immobilization of Laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647. doi:10.4014/jmb.1401.01025

    Article  CAS  PubMed  Google Scholar 

  19. Forough M, Farhadi K (2010) Biological and green synthesis of silver nanoparticles, Turkish. J Eng Env Sci 34:281–287. doi:10.3906/muh-1005-30

    CAS  Google Scholar 

  20. Sarvamangala D, Kondala K, Sivakumar N, Babu MS, Manga S (2013) Synthesis, characterization and anti microbial studies of AgNP’s using probiotics. Int Res J Pharm 4:240–243. doi:10.7897/2230-8407.04352

    Article  CAS  Google Scholar 

  21. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZNO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465

    Google Scholar 

  22. Kumar KM, Mandal BK, Sinha M, Krishnakumar V (2012) Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim Acta A 86:490–494. doi:10.1016/j.saa.2011.11.001

    Article  Google Scholar 

  23. Kalia VC (2014) Microbes, Antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. doi:10.1007/s12088-013-0443-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research on synthesis of silver nanoparticles from water extract of Arnicae anthodium was carried out thanks to the laboratory of Adam Mickiewicz University Foundation in Poznań, established within the project WND-POIG.05.01.00-00-058/2011 “Waste Cluster—raising the standards of waste management using new technologies”. The project is co-financed by the European Union from the European Regional Development Fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Dobrucka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrucka, R., Długaszewska, J. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium . Indian J Microbiol 55, 168–174 (2015). https://doi.org/10.1007/s12088-015-0516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0516-x

Keywords

Navigation