Skip to main content
Log in

GC–MS Analysis of Bio-active Molecules Derived from Paracoccus pantotrophus FMR19 and the Antimicrobial Activity Against Bacterial Pathogens and MDROs

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present investigation is focused on the study of chemical composition of a bioactive compound derived from a rumen isolate Paracoccus pantotrophus FMR19 using GC–MS and to find out the antibacterial activity of the extracted crude bioactive compounds against multidrug resistant organisms (MDROs) and other clinical pathogens. GC–MS analysis revealed that P. pantotrophus FMR19 produced eight major compounds that have been reported to exhibit antimicrobial property. The main components identified from hexane fraction are long chain alkanes, fatty alcohols, fatty acid methyl ester and aromatic hydrocarbons. These molecules are not only active against clinical pathogens such as Salmonella sp. and Proteus sp. and also effective against MDROs such as Metallo β lactamase and Pan drug resistant bacterial strains and Methicillin resistant Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atta HM, Dabour SM, Desoukey SG (2009) Sparsomycin antibiotic production by Streptomyces sp. AZ-NIOFD1: taxonomy, fermentation, purification and biological activities. Am Eurasian J Agric Environ Sci 5:368–377

  2. Imada C (2005) Enzyme inhibitors and other bioactive compounds from marine Actinomycetes. Antonie Van Leeuwenhoek 87:59–63. doi:10.1007/s10482-004-6544-x

    Article  CAS  PubMed  Google Scholar 

  3. Valli S, Suvathi SS, Aysha OS, Nirmala P, Vinoth KP, Reena A (2012) Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed 2:469–473. doi:10.1016/S2221-1691(12)60078-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine Actinomyces. Indian J Microbiol 48:410–431. doi:10.1007/s12088-008-0052-z

    Article  CAS  PubMed  Google Scholar 

  5. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  6. Hughes CC, Prieto-Davo A, Jensen PR, Fenical W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629–631. doi:10.1021/ol702952n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed Engl 42:355–357. doi:10.1002/anie.200390115

    Article  CAS  PubMed  Google Scholar 

  8. Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine Actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048. doi:10.1111/j.1462-2920.2005.00785.x

    Article  PubMed  Google Scholar 

  9. Riedlinger J, Reicke A, Zahner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischoff D, Sussmuth RD, Fiedler HP (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279. doi:10.1038/ja.2007.54

    Article  CAS  PubMed  Google Scholar 

  10. Koul S, Jyotsana P, Anjali M, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. doi:10.1007/s12088-015-0558-0

    Article  CAS  PubMed  Google Scholar 

  11. Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK (2013) Antibacterial activity of long-chain fatty alcohols against Mycobacteria. FEMS Microbiol Lett 338:177–183. doi:10.1111/1574-6968.12043

    Article  CAS  PubMed  Google Scholar 

  12. Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227. doi:10.1016/S0378-1097(03)00103-4

    Article  CAS  PubMed  Google Scholar 

  13. Willis AT (2014) Anaerobic bacteriology: clinical and laboratory practice. Butterworth-Heinemann, London

    Google Scholar 

  14. Rajalakshmi S, Mahesh N (2014) Production and characterization of bioactive metabolites isolated from Aspergillus terreus in rhizosphere soil of medicinal plants. Int J Curr Microbiol Appl Sci 3:784–798

    CAS  Google Scholar 

  15. Kalpana Devi V, Shanmugasundaram R, Mohan VR (2012) GC–MS analysis of ethanol extracts of Entada pursaetha dc seed. Biosci Discover 3:30–33

    Google Scholar 

  16. Yogeswari S, Ramalakshmi S, Neelavathy R, Muthumary J (2012) Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob J Pharmacol 6:65–71

    Google Scholar 

  17. Chaudhary R, Tripathy A (2015) Isolation and identification of bioactive compounds from Irpex Lacteus Wild Fleshy Fungi. J Pharm Sci Res 7:424–434

    CAS  Google Scholar 

  18. Salem MZ, Ali HM, Mansour MM (2014) Fatty acid methyl esters from air-dried wood, bark, and leaves of Brachychiton diversifolius R. Br: antibacterial, antifungal, and antioxidant activities. Bioresources 9:3835–3845

    Google Scholar 

  19. Suresh A, Praveenkumar R, Thangaraj R, Oscar FL, Baldev E, Dhanasekaran D, Thajuddin N (2014) Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Dis 4:979–984. doi:10.1016/S2222-1808(14)60769-6

    Article  Google Scholar 

  20. Boussaada O, Ammar S, Saidana D, Chriaa J, Chraif I, Daami M, Helal AN, Mighri Z (2008) Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiol Res 163:87–95. doi:10.1080/10412905.2009.9700142

    Article  CAS  PubMed  Google Scholar 

  21. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. doi:10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  22. Naoko T, Akiko S, Miki N, Keisuke M, Kazutoyo E, Hajime H, Yoshihiro I (2007) Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecule 12:139–148. doi:10.3390/12020139

    Article  Google Scholar 

  23. Chandrasekar T, Rao MRK, Kumar RV, Prabhu K, NandhaKumar V, Divya D (2015) GC–MS analysis, antimicrobial, antioxidant activity of an Ayurvedic medicine. Nimbapatradi Choornam. J Chem Pharm Res 7:124–136. doi:10.1155/2014/694934

    CAS  Google Scholar 

  24. Rahbar N, Shafagha A, Salimi F (2012) Antimicrobial activity and constituents of the hexane extracts from leaf and stem of Origanum vulgare L. sp. Viride (Boiss.) Hayek. Growing wild in Northwest Iran. J Med Plants Res 6:2681–2685. doi:10.5897/JMPR11.1768

    Google Scholar 

  25. Raj Kumar K, Brindha Priyadarisini V, Ranjith Kumar M (2012) Isolation and identification of bioactive compounds from Bacillus Megateriume5 from the south east coastal region of India against urinary tract infectious pathogens. Int J Phar Biol Archives 3:842–847

    Google Scholar 

  26. Usha Nandhini S, Sangareshwari S, Lata K (2015) Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian J Pharm Clin Res 8:244–246

    Google Scholar 

  27. Girija S, Veeramuthu D, Pandi Suba K, Hariprasad G, Raghuraman R (2014) Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. Int Sch Res Notices. doi:10.1155/2014/820745

    PubMed  PubMed Central  Google Scholar 

  28. Al-Youssef HM, Hassan WHB (2015) Antimicrobial and antioxidant activities of Parkinsonia aculeata and chemical composition of their essential oils. Merit Res J Med Med Sci 3:147–157

    Google Scholar 

  29. Olubunmi A, Gabriel OA, Stephen AO, Scott FO (2011) Antioxidant and antimicrobial activity of cuticular wax from Kigelia Africana. FABAD J Pharm Sci 34:187–194

    Google Scholar 

  30. Garaniya N, Bapodra A (2014) Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: a review. Asian Pac J Trop Biomed 4:27–34. doi:10.12980/APJTB.4.2014C1069

    Article  Google Scholar 

  31. Al-Abd NM, Mohamed ZN, Mansor M, Azhar F, Hasan MS, Kassim M (2015) Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complement Altern Med 15:1–13. doi:10.1186/s12906-015-0914-y

    Article  Google Scholar 

  32. Nahar N, Rahman S, Rahman SM, Moniruzzaman M (2016) GC-MS analysis and antibacterial activity of Trigonella foenumgraecum against bacterial pathogens. Free Radical Antioxid 6:109–114. doi:10.5530/fra.2016.1.13

    Article  CAS  Google Scholar 

  33. Hussain AZ, Kumaresan S (2014) GC-MS studies and phytochemical screening of Sesbania grandiflora L. J Chem Pharm Res 6:43–47

    Google Scholar 

  34. Afolayan AJ, Ashafa AOT (2009) Chemical composition and antimicrobial activity of the essential oil from Chrysocoma ciliata L. leaves. J Med Plant Res 3:390–394

    CAS  Google Scholar 

  35. Kuppuswamy MK, Jonnalagadda B, Arockiasamy S (2013) GC-MS analysis of chloroform extract of Croton bonplandianum. Int J Pharm Bio Sci 4:613–617

    CAS  Google Scholar 

  36. Bhardwaj A, Shakil NA, Jha V, Gupta RK (2014) Screening of nutritional, phytochemical, antioxidant and antibacterial activity of underutilized seeds of Scirpus articulatus: the basis of Khubahi Ramdana industry. J Pharma Phytochem 3:311–320

    Google Scholar 

  37. Sivakumar SR (2014) GC-MS analysis and antibacterial potential of white crystalline solid from red algae Portieria hornemannii against the plant pathogenic bacteria Xanthomnas axonopodis pv. citri (Hasse) Vauterin et al. and Xanthomonas campestris pv. malvacearum (smith 1901) dye 1978b. Int J of Adv Res 2:174–183

    Google Scholar 

Download references

Acknowledgments

The author I. Faridha Begum, Senior research Fellow is grateful for the financial assistance by University Grant Commision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridha Begum, I., Mohankumar, R., Jeevan, M. et al. GC–MS Analysis of Bio-active Molecules Derived from Paracoccus pantotrophus FMR19 and the Antimicrobial Activity Against Bacterial Pathogens and MDROs. Indian J Microbiol 56, 426–432 (2016). https://doi.org/10.1007/s12088-016-0609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0609-1

Keywords

Navigation