Skip to main content
Log in

Sniff-testing for indoor air contaminants from new buildings environment detecting by aspiration-type ion mobility spectrometry

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

New construction materials, building and car interiors, and furnishings typically cause air pollution by means of emitting toxic chemical substances indoors. The level of health hazard to the occupants depends on the emission rate of the pollutants, the period of occupant exposure to the pollutants and the concentration of the emitted toxic substances. Typical health effects induced by the indoor air contaminants include symptoms such as dizziness, light-headedness, concentration trouble, nausea, epistaxis, eyes, nose and throat irritation, dryness of nose and throat, and decreased mucous flow rate. Traditional offline indoor air detection techniques, namely, mass spectrometry (MS), gas chromatography (GC) and UV spectroscopy involve collection of indoor air samples from the field followed by laboratory analysis. Because these techniques are slow and time consuming, online indoor air detection and monitoring techniques which are fast, reliable and accurate enough to trigger more extensive analysis are required. In this paper, ion mobility spectrometry for an alternative indoor air detection technique is studied. An aspiration-type ion mobility spectrometer (IMS), in the form of a portable and handheld unit, is employed for the online detection of indoor air contaminants. By means of sniff tests performed on the 62 most commonly occurring indoor air contaminants, the sensitivity of aspiration-type IMS technique towards the indoor air contaminants and hence its suitability for indoor air quality detection is evaluated and demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Liu Y, Zhou X, Wang D, Song C, Liu J (2015) A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory. J Hazard Mater 299:685–695

    Article  CAS  Google Scholar 

  2. Wu P, Feng Y, Pienaar J, Xia B (2015) A review of benchmarking in carbon labelling schemes for building materials. J Clean Prod 109:108–117

    Article  Google Scholar 

  3. Solgi E, Fayaz R, Behrouz Mohammad Kari B (2016) Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation. Renew Energy 85:725–731

    Article  Google Scholar 

  4. Zhao Y, Lu W, Wang H (2015) Volatile trace compounds released from municipal solid waste at the transfer stage: evaluation of environmental impacts and odour pollution. J Hazard Mater 300:695–701

    Article  CAS  Google Scholar 

  5. Can E, Özlem Özden Ü, Döğeroğlu T, Gaga EO (2015) Indoor air quality assessment in painting and printmaking department of a fine arts faculty building. Atmos Pollut Res 6:1035–1045

    Article  Google Scholar 

  6. Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43:153–169

    Article  CAS  Google Scholar 

  7. Ye W, Won D, Zhang X (2015) A simple VOC prioritization method to determine ventilation rate for indoor environment based on building material emissions. Procedia Eng 121:1697–1704

    Article  CAS  Google Scholar 

  8. Liu Y, Zhou X, Wang D, Song C, Liu J (2015) A prediction model of VOC partition coefficient in porous building materials based on adsorption potential theory. Build Environ 93:221–233

    Article  Google Scholar 

  9. Cheng Y-H, Lin C-C, Hsu S-C (2015) Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions. Build Environ 87:274–282

    Article  Google Scholar 

  10. Ramel M, Nomine M (2000) Physicochemical characterisation of odours. Analusis 28:171–179

    Article  CAS  Google Scholar 

  11. Deshmukh S, Bandyopadhyay R, Bhattacharyya N, Pandey RA, Jana A (2015) Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring-An overview. Talanta 144:329–340

    Article  CAS  Google Scholar 

  12. Seon Park H, Ji C, Hong T (2016) Methodology for assessing human health impacts due to pollutants emitted from building materials. Build Environ 95:133–144

    Article  Google Scholar 

  13. Abraham S, Li X (2014) A cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Comput Sci 34:165–171

    Article  Google Scholar 

  14. Kim M, Liu H, Kim JT, Yoo C (2014) Evaluation of passenger health risk assessment of sustainable indoor air quality monitoring in metro systems based on a non-Gaussian dynamic sensor validation method. J Hazard Mater 278:124–133

    Article  CAS  Google Scholar 

  15. Mandayo GG, Gonzalez-Chavarri J, Hammes E, Newton H, Castro-Hurtado I, Ayerdi I, Knapp H, Sweetman A, Hewitt CN, Castaño E (2015) System to control indoor air quality in energy efficient buildings. Urban Climate 14:475–485

    Article  Google Scholar 

  16. Yu CWF, Kim JT (2010) Building pathology, investigation of sick buildings-VOC emissions. Indoor Built Environ 19:30–39

    Article  CAS  Google Scholar 

  17. Vuokko A, Selinheimo S, Sainio M, Suojalehto H, Järnefelt H, Virtanen M, Kallio E, Hublin C, Karvala K (2015) Decreased work ability associated to indoor air problems-An intervention (RCT) to promote health behavior. Neurotoxicology 49:59–67

    Article  Google Scholar 

  18. Kallvik E, Putus T, Simberg S (2015) Indoor air problems and hoarseness in children. J Voice. doi:10.1016/j.jvoice.2015.02.012

    Google Scholar 

  19. Villanueva F, Tapia A, Amo-Salas M, Notario A, Cabañas B, Martínez E (2015) Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk. Int J Hyg Environ Health 218:522–534

    Article  CAS  Google Scholar 

  20. Mentese S, Mirici NA, Otkun MT, Bakar C, Palaz E, Tasdibi D, Cevizci S, Cotuker O (2015) Association between respiratory health and indoor air pollution exposure in Canakkale, Turkey. Build Environ 93:72–83

    Article  Google Scholar 

  21. Raeppel C, Appenzeller BM, Millet M (2015) Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA ® passive tubes. Talanta 131:309–314

    Article  CAS  Google Scholar 

  22. Wu Y, Chang VW (2012) Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography–mass spectrometry. J Chromatogr A 1238:114–120

    Article  CAS  Google Scholar 

  23. Mercier F, Gilles E, Saramito G, Glorennec P, Le Bot B (2014) A multi-residue method for the simultaneous analysis in indoor dust of several classes of semi-volatile organic compounds by pressurized liquid extraction and gas chromatography/tandem mass spectrometry. J Chromatogr A 1336:101–111

    Article  CAS  Google Scholar 

  24. Yoshida T (2009) Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry. J Chromatogr A 1216:5069–5076

    Article  CAS  Google Scholar 

  25. Zhou J, Li P, Zhang S, Long Y, Zhou F, Huang Y, Yang P, Bao M (2003) Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensors Actuators B 94:337–342

    Article  CAS  Google Scholar 

  26. Bender F, Barie N, Romoudis G, Voigt A, Rapp M (2003) Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring. Sensors Actuators B 93:135–141

    Article  CAS  Google Scholar 

  27. Frank J, Meixner H (2001) Sensor system for indoor air monitoring using semiconducting metal oxides and IR-absortion. Sensors Actuators B 78:298–302

    Article  CAS  Google Scholar 

  28. Utriainen M, Kärpänoja E, Paakkanen H (2003) Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors. Sensors Actuators B 93:17–24

    Article  CAS  Google Scholar 

  29. Miller RA, Eiceman GA, Nazarov EG, King AT (2000) A novel micromachined high-field asymmetric waveform-ion mobility spectrometer. Sensors Actuators B 67:300–306

    Article  CAS  Google Scholar 

  30. Räsänen R-M, Håkansson M, Viljanen M (2010) Differentiation of air samples with and without microbial volatile organic compounds by aspiration ion mobility spectrometry and semiconductor sensors. Build Environ 45:2184–2191

    Article  Google Scholar 

  31. Mikedi K, Pallis GC, Koumoundouros GC, Vamvakari J, Statheropoulos G, Psarras G, Moll VH, McEntee R, Statheropoulos M (2016) Enhancing capabilities of aspiration-type ion mobility spectrometer using a pulsed sampling system and a heated transfer line. Sensors Actuators B 222:240–248

    Article  CAS  Google Scholar 

  32. Mäkinen M, Nousiainen M, Sillanpää M (2011) Ion spectrometric detection technologies for ultra-traces of explosives: a review. Mass Spectrom Rev 30:940–973

    Google Scholar 

  33. Fernández-Maestre R (2012) Ion mobility spectrometry: history, characteristics and applications. Rev UDCA Act Div Cient 15:467–479

    Google Scholar 

  34. Puton J, Nousiainen M, Sillanpää M (2008) Ion mobility spectrometers with doped gases. Talanta 76:978–987

    Article  CAS  Google Scholar 

  35. Eiceman G, Karpas Z, Hill HH Jr (2014) Ion mobility spectrometry. CRC Press, ISBN 13:978-1-4398-5997-1

  36. Sun Y, Ong KY (2005) Detection technologies for chemical warfare agents and toxic vapors. CRC press, ISBN 1-56670-668-8

  37. Mäkinen MA, Anttalainen OA, Sillanpää ME (2010) Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal Chem 82:9594–9600

    Article  Google Scholar 

  38. Holopainen S, Nousiainen M, Anttalainen O, Sillanpää MET (2012) Sample-extraction methods for ion-mobility spectrometry in water analysis. TrAC Trends Anal Chem 37:124–134

    Article  CAS  Google Scholar 

  39. Vautza W, Sielemann S, Baumbach JI (2004) Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Anal Chim Acta 513:393–399

    Article  Google Scholar 

  40. Hübert T, Tiebe C, Stephan I, Miessner H, Koch B (2008) Detection of mould in indoor environments using a mini ion-mobility spectrometer system

  41. Hübert T, Tiebe C, Stephan I (2011) Detection of fungal infestations of wood by ion mobility spectrometry. Int Biodeterior Biodegrad 65:675–681

    Article  Google Scholar 

  42. Tiebe C, Miessner H, Koch B, Hübert T (2009) Detection of microbial volatile organic compounds (MVOCs) by ion-mobility spectrometry. Anal Bioanal Chem 395:2313–2323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osmo Anttalainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnanthigo, Y., Anttalainen, O., Safaei, Z. et al. Sniff-testing for indoor air contaminants from new buildings environment detecting by aspiration-type ion mobility spectrometry. Int. J. Ion Mobil. Spec. 19, 15–30 (2016). https://doi.org/10.1007/s12127-016-0189-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0189-0

Keywords

Navigation