Skip to main content

Advertisement

Log in

Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biofuels produced from lignocellulosic biomass can significantly reduce the energy dependency on fossil fuels and the resulting effects on environment. In this respect, cellulosic ethanol as an alternative fuel has the potential to become a viable energy source in the near future. Over the past few decades, tremendous effort has been undertaken to make cellulosic ethanol cost competitive with conventional fossil fuels. The pretreatment step is always necessary to deconstruct the recalcitrant structures and to make cellulose more accessible to enzymes. A large number of pretreatment technologies involving physical, chemical, biological, and combined approaches have been developed and tested at the pilot scale. Furthermore, various strategies and methods, including multi-enzyme complex, non-catalytic additives, enzyme recycling, high solids operation, design of novel bioreactors, and strain improvement have also been implemented to improve the efficiency of subsequent enzymatic hydrolysis and fermentation. These technologies provide significant opportunities for lower total cost, thus making large-scale production of cellulosic ethanol possible. Meanwhile, many researchers have focused on the key factors that limit cellulose hydrolysis, and analyzing the reaction mechanisms of cellulase. This review describes the most recent advances on process intensification and mechanism research of pretreatment, enzymatic hydrolysis, and fermentation during the production of cellulosic ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SSF:

Simultaneous saccharification and fermentation

SSCF:

Simultaneous saccharification and co-fermentation

ARP:

Ammonia recycle percolation

SAA:

Soaking in aqueous ammonia

AFEX:

Ammonia fiber explosion

HCW:

Hot-compressed water

NMO:

N-methyl-morpholine-N-oxide

EG:

Endoglucanase

CBH:

Cellobiohydrolase

BG:

β-glucosidase

CBR:

Conventional batch reactor

MBR:

Membrane bioreactor

RBR:

Roller bottle reactors

CBM:

Cellulose-binding module

CAC:

Cellulose accessibility to cellulase

DP:

Degree of polymerization

SEC:

Size exclusion chromatography

MALLS:

Multi-angle laser light scattering

References

  1. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  CAS  Google Scholar 

  2. Waltz E (2008) Cellulosic ethanol booms despite unproven business models. Nat Biotechnol 26:8–9

    Article  PubMed  CAS  Google Scholar 

  3. Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefining 1:119–134

    Article  CAS  Google Scholar 

  4. Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefining 2:319–330

    Article  CAS  Google Scholar 

  5. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  6. Huang RL, Qi W, Su RX, He ZM (2010) Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chem Commun 46:1115–1117

    Article  CAS  Google Scholar 

  7. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2:26–40

    Article  CAS  Google Scholar 

  8. Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  9. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  10. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  PubMed  CAS  Google Scholar 

  11. Zhang MJ, Su RX, Qi W, He ZM (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotechnol 160:1407–1414

    Article  PubMed  CAS  Google Scholar 

  12. Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  PubMed  CAS  Google Scholar 

  13. Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467

    Article  PubMed  CAS  Google Scholar 

  14. Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102:1544–1557

    Article  PubMed  CAS  Google Scholar 

  15. Kim ES, Lee HJ, Bang WG, Choi IG, Kim KH (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102:1342–1353

    Article  PubMed  CAS  Google Scholar 

  16. Tu MB, Zhang X, Paice M, MacFarlane P, Saddler JN (2009) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 100:6407–6415

    Article  PubMed  CAS  Google Scholar 

  17. Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161:274–287

    Article  PubMed  CAS  Google Scholar 

  18. Steele E, Raj S, Nghiem J, Stowers M (2005) Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion-treated corn stover. Appl Biochem Biotechnol 121:901–910

    Article  PubMed  Google Scholar 

  19. Zhang CQ, Qi W, Wang F, Li Q, Su RX, He ZM (2011) Ethanol from corn stover using SSF: an economic assessment. Energy Sources Part B 6:136–144

    Google Scholar 

  20. Zhang MJ, Wang F, Su RX, Qi W, He ZM (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964

    Article  PubMed  CAS  Google Scholar 

  21. Varga E, Klinke HB, Reczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574

    Article  PubMed  CAS  Google Scholar 

  22. Roche CM, Dibble CJ, Stickel JJ (2009) Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuels 2:28

    Article  PubMed  CAS  Google Scholar 

  23. Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870

    Article  PubMed  CAS  Google Scholar 

  24. Zhang J, Chu DQ, Huang J, Yu ZC, Dai GC, Bao J (2010) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng 105:718–728

    PubMed  CAS  Google Scholar 

  25. Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv 28:407–425

    Article  PubMed  CAS  Google Scholar 

  26. Zhang MJ, Su RX, Li Q, Qi W, He ZM (2011) Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. BioEnerg Res 4:134–140

    Article  Google Scholar 

  27. Yang S, Ding WY, Chen HZ (2009) Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor. Biomass Bioenerg 33:332–336

    Article  CAS  Google Scholar 

  28. Belafi-Bako K, Koutinas A, Nemestothy N, Gubicza L, Webb C (2006) Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor. Enzyme Microb Technol 38:155–161

    Article  CAS  Google Scholar 

  29. Li CZ, Seki K, Matsunaga T, Yoshimoto M, Fukunaga K, Nakao K (2004) Enzymatic hydrolysis of waste paper in an external loop airlift bubble column with continuous ultrasonic irradiation. J Chem Eng Jpn 37:1041–1049

    Article  CAS  Google Scholar 

  30. Li CZ, Matsunaga T, Seki K, Yoshimoto M, Furumoto K, Fukunaga K et al (2006) Effects of sparging gas properties and substrate size on enzymatic hydrolysis of waste paper in an ultrasonic external loop airlift. Chem Eng Technol 29:1090–1096

    Article  CAS  Google Scholar 

  31. Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  PubMed  CAS  Google Scholar 

  32. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. In: Biofuels 108:147–177

  33. Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    Article  PubMed  CAS  Google Scholar 

  34. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  35. Huang RL, Su RX, Qi W, He ZM (2010) Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Prog 26:384–392

    Article  PubMed  CAS  Google Scholar 

  36. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? In: Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 108:67–93

  37. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  PubMed  CAS  Google Scholar 

  38. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828

    Article  PubMed  CAS  Google Scholar 

  39. Gil N, Ferreira S, Amaral ME, Domingues FC, Duarte AP (2010) The influence of dilute acid pretreatment conditions on the enzymatic saccharification of Erica spp. for bioethanol production. Ind Crops Prod 32:29–35

    Article  CAS  Google Scholar 

  40. Guo GL, Chen WH, Men LC, Hwang WS (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour Technol 99:6046–6053

    Article  PubMed  CAS  Google Scholar 

  41. Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M et al (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223

    Article  PubMed  CAS  Google Scholar 

  42. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour Technol 96:2007–2013

    Article  PubMed  CAS  Google Scholar 

  43. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 137:81–92

    Article  PubMed  Google Scholar 

  44. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  PubMed  CAS  Google Scholar 

  45. Glasser WG, Wright RS (1998) Steam-assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass Bioenergy 14:219–235

    Article  CAS  Google Scholar 

  46. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    Article  PubMed  CAS  Google Scholar 

  47. Sassner P, Martensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresour Technol 99:137–145

    Article  PubMed  CAS  Google Scholar 

  48. Sendich E, Laser M, Kim S, Alizadeh H, Laureano-Perez L, Dale B et al (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–8435

    Article  PubMed  CAS  Google Scholar 

  49. Bals B, Rogers C, Jin MJ, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1

    Article  PubMed  CAS  Google Scholar 

  50. Murnen HK, Balan V, Chundawat SPS, Bals B, Sousa LD, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23:846–850

    PubMed  CAS  Google Scholar 

  51. Zhong C, Lau MW, Balan V, Dale BE, Yuan YJ (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  PubMed  CAS  Google Scholar 

  52. Perez JA, Ballesteros I, Ballesteros M, Saez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  CAS  Google Scholar 

  53. Martín C, Thomsen MH, Hauggaard-Nielsen H, BelindaThomsen A (2008) Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresour Technol 99:8777–8782

    Article  PubMed  CAS  Google Scholar 

  54. Montalbo-Lomboy M, Johnson L, Khanal SK, van Leeuwen J, Grewell D (2010) Sonication of sugary-2 corn: a potential pretreatment to enhance sugar release. Bioresour Technol 101:351–358

    Article  PubMed  CAS  Google Scholar 

  55. Nitayavardhana S, Shrestha P, Rasmussen ML, Lamsal BP, van Leeuwen J, Khanal SK (2010) Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants. Bioresour Technol 101:2741–2747

    Article  PubMed  CAS  Google Scholar 

  56. Nitayavardhana S, Rakshit SK, Grewell D, van Leeuwen J, Khanal SK (2008) Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. Biotechnol Bioeng 101:487–496

    Article  PubMed  CAS  Google Scholar 

  57. Karki B, Lamsal BP, Jung S, van Leeuwen J, Pometto AL, Grewell D et al (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96:270–278

    Article  CAS  Google Scholar 

  58. Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenerg 34:1703–1710

    Article  CAS  Google Scholar 

  59. Karunanithy C, Muthukumarappan K (2011) Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Ind Crops Prod 33:188–199

    Article  CAS  Google Scholar 

  60. Karki B, Maurer D, Kim TH, Jung S (2011) Comparison and optimization of enzymatic saccharification of soybean fibers recovered from aqueous extractions. Bioresour Technol 102:1228–1233

    Article  PubMed  CAS  Google Scholar 

  61. Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  PubMed  CAS  Google Scholar 

  62. Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482

    Article  PubMed  CAS  Google Scholar 

  63. Teramoto Y, Tanaka N, Lee SH, Endo T (2008) Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnol Bioeng 99:75–85

    Article  PubMed  CAS  Google Scholar 

  64. Ha SH, Mai NL, An G, Koo Y-M (2011) Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour Technol 102:1214–1219

    Article  PubMed  CAS  Google Scholar 

  65. Yu J, Zhang JB, He J, Liu ZD, Yu ZN (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908

    Article  PubMed  CAS  Google Scholar 

  66. Zhao YL, Wang Y, Zhu JY, Ragauskas A, Deng YL (2008) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99:1320–1328

    Article  PubMed  CAS  Google Scholar 

  67. Luterbacher JS, Tester JW, Walker LP (2010) High-solids biphasic CO2–H2O pretreatment of lignocellulosic biomass. Biotechnol Bioeng 107:451–460

    Article  PubMed  CAS  Google Scholar 

  68. Jeihanipour A, Karimi K, Taherzadeh MJ (2010) Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol Bioeng 105:469–476

    Article  PubMed  CAS  Google Scholar 

  69. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  PubMed  CAS  Google Scholar 

  70. Huang RL, Qi W, Su RX, He ZM (2010) The optimization of fractionating lignocellulose by formic acid using response surface methodology. Energy Sources A Recovery Util Environ Eff 32:1282–1292

    CAS  Google Scholar 

  71. Zhang MJ, Qi W, Liu R, Su RX, Wu SM, He ZM (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenerg 34:525–532.

    Google Scholar 

  72. Zhu ZG, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103:715–724

    Article  PubMed  CAS  Google Scholar 

  73. Sathitsuksanoh N, Zhu ZG, Templeton N, Rollin JA, Harvey SP, Zhang YHP (2009) Saccharification of a potential bioenergy crop, Phragmites australis (Common Reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Ind Eng Chem Res 48:6441–6447

    Article  CAS  Google Scholar 

  74. Sathitsuksanoh N, Zhu ZG, Ho TJ, Bai MD, Zhang YHP (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101:4926–4929

    Article  PubMed  CAS  Google Scholar 

  75. Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863

    Article  PubMed  CAS  Google Scholar 

  76. Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels 1:2

    Article  PubMed  CAS  Google Scholar 

  77. Li MF, Fan YM, Xu F, Sun RC, Zhang XL (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crops Prod 32:551–559

    Article  CAS  Google Scholar 

  78. Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46

    Article  CAS  Google Scholar 

  79. Cheng YS, Zheng Y, Yu CW, Dooley TM, Jenkins BM, VanderGheynst JS (2010) Evaluation of high solids alkaline pretreatment of rice straw. Appl Biochem Biotechnol 162:1768–1784

    Article  PubMed  CAS  Google Scholar 

  80. Zhang J, Wang X, Chu D, He Y, Bao J (2011) Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresour Technol 102:4480–4488

    Article  PubMed  CAS  Google Scholar 

  81. Li Q, He YC, Xian M, Jun G, Xu X, Yang JM et al (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575

    Article  PubMed  CAS  Google Scholar 

  82. Li B, Asikkala J, Filpponen I, Argyropoulos DS (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484

    Article  CAS  Google Scholar 

  83. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  PubMed  CAS  Google Scholar 

  84. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  PubMed  CAS  Google Scholar 

  85. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  PubMed  CAS  Google Scholar 

  86. Sorensen HR, Pedersen S, Jorgensen CT, Meyer AS (2007) Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-b-xylanase and a-(L)-arabinofuranosidase activities. Biotechnol Prog 23:100–107

    Article  PubMed  CAS  Google Scholar 

  87. Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and a-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558

    Article  PubMed  CAS  Google Scholar 

  88. Dien BS, Li XL, Iten LB, Jordan DB, O’Bryan PJ, Cotta MA (2006) Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides. Enzyme Microb Technol 39:1137–1144

    Article  CAS  Google Scholar 

  89. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Aslam N, Walton JD (2010) Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set. Biotechnol Bioeng 106:707–720

    Article  PubMed  CAS  Google Scholar 

  90. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Bongers M, Walton JD (2010) Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresour Technol 101:9097–9105

    Article  PubMed  CAS  Google Scholar 

  91. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:22

    Article  PubMed  CAS  Google Scholar 

  92. Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R et al (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227

    Article  PubMed  CAS  Google Scholar 

  93. Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377

    Article  PubMed  CAS  Google Scholar 

  94. Fontes C, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to designed to deconstruct plant cell wall complex carbohydrates. In: Annu Rev Biochem 79:655–681

  95. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  PubMed  CAS  Google Scholar 

  96. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  PubMed  CAS  Google Scholar 

  97. Ouyang J, Dong ZW, Song XY, Lee X, Chen M, Yong QA (2010) Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresour Technol 101:6685–6691

    Article  PubMed  CAS  Google Scholar 

  98. Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  99. Li Q, Zhang MJ, Su RX, Qi W, He ZM (2010) Process optimization of cellulase re-adsorption for reutilization. Chem Eng (China) 38:62–65

    Google Scholar 

  100. Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb Technol 40:754–762

    Article  CAS  Google Scholar 

  101. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  PubMed  CAS  Google Scholar 

  102. Huang XP, Monk C (2004) Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World J Microbiol Biotechnol 20:85–92

    Article  CAS  Google Scholar 

  103. Wei W, Yang C, Luo J, Lu CM, Wu YJ, Yuan S (2010) Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase. J Plant Physiol 167:1204–1210

    Article  PubMed  CAS  Google Scholar 

  104. Carey RE, Cosgrove DJ (2007) Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins. Ann Bot 99:1131–1141

    Article  PubMed  CAS  Google Scholar 

  105. Lee HJ, Lee S, Ko HJ, Kim KH, Choi IG (2010) An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity. Mol Cells 29:379–385

    Article  PubMed  CAS  Google Scholar 

  106. Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama JI, Takahashi H et al (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microbiol 76:2556–2561

    Article  PubMed  CAS  Google Scholar 

  107. Yao Q, Sun TT, Liu WF, Chen GJ (2008) Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem 72:2799–2805

    Article  PubMed  CAS  Google Scholar 

  108. Tu MB, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23:398–406

    Article  PubMed  CAS  Google Scholar 

  109. Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 102:2881–2889

    Article  PubMed  CAS  Google Scholar 

  110. Tu MB, Chandra RP, Saddler JN (2007) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Prog 23:1130–1137

    Article  PubMed  CAS  Google Scholar 

  111. Wang F, Su RX, Qi W, Zhang MJ, He ZM (2010) Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite. Prep Biochem Biotechnol 40:57–64

    Article  PubMed  CAS  Google Scholar 

  112. Chang MY, Juang RS (2007) Use of chitosan-clay composite as immobilization support for improved activity and stability of β-glucosidase. Biochem Eng J 35:93–98

    Article  CAS  Google Scholar 

  113. Tu MB, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28:151–156

    Article  PubMed  CAS  Google Scholar 

  114. Gomez JM, Romero MD, Fernandez TM, Garcia S (2010) Immobilization and enzymatic activity of β-glucosidase on mesoporous SBA-15 silica. J Porous Mater 17:657–662

    Article  CAS  Google Scholar 

  115. Karagulyan HK, Gasparyan VK, Decker SR (2008) Immobilization of fungal β-glucosidase on silica gel and kaolin carriers. Appl Biochem Biotechnol 146:39–47

    Article  PubMed  CAS  Google Scholar 

  116. Jones PO, Vasudevan PT (2010) Cellulose hydrolysis by immobilized Trichoderma reesei cellulase. Biotechnol Lett 32:103–106

    Article  PubMed  CAS  Google Scholar 

  117. Liao HD, Chen D, Yuan L, Zheng M, Zhu YH, Liu XM (2010) Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr Polym 82:600–604

    Article  CAS  Google Scholar 

  118. Larsen J, Petersen MO, Thirup L, Li HW, Iversen FK (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765–772

    Article  CAS  Google Scholar 

  119. Hodge DB, Karim MN, Schell DJ, McMillan JD (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152:88–107

    Article  PubMed  CAS  Google Scholar 

  120. Hoyer K, Galbe M, Zacchi G (2010) Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnol Biofuels 3:14

    PubMed  Google Scholar 

  121. Olofsson K, Rudolf A, Lidén G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    Article  PubMed  CAS  Google Scholar 

  122. Lu YF, Wang YH, Xu GQ, Chu J, Zhuang YP, Zhang SL (2010) Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl Biochem Biotechnol 160:360–369

    Article  PubMed  CAS  Google Scholar 

  123. Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104:290–300

    Article  PubMed  CAS  Google Scholar 

  124. Dasari RK, Dunaway K, Berson RE (2009) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23:492–497

    Article  CAS  Google Scholar 

  125. Li CZ, Yoshimoto M, Ogata H, Tsukuda N, Fukunaga K, Nakao K (2005) Effects of ultrasonic intensity and reactor scale on kinetics of enzymatic saccharification of various waste papers in continuously irradiated stirred tanks. Ultrason Sonochem 12:373–384

    Article  PubMed  CAS  Google Scholar 

  126. Pinelo M, Jonsson G, Meyer AS (2009) Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance. Sep Purif Technol 70:1–11

    Article  CAS  Google Scholar 

  127. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  128. van Maris AJA, Winkler AA, Kuyper M, de Laat W, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose lsomerase as a key component. In: Biofuels 108:179–204

    Google Scholar 

  129. Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  PubMed  CAS  Google Scholar 

  130. Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24

    Article  PubMed  CAS  Google Scholar 

  131. Zhang JY, Lynd LR (2010) Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnol Bioeng 107:235–244

    Article  PubMed  CAS  Google Scholar 

  132. Zhang XR, Shen Y, Shi WL, Bao XM (2010) Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour Technol 101:7093–7099

    Article  CAS  Google Scholar 

  133. Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9

    Article  PubMed  CAS  Google Scholar 

  134. Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hagerdal B (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130

    Article  PubMed  CAS  Google Scholar 

  135. Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T et al (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119

    Article  CAS  Google Scholar 

  136. Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052

    Article  PubMed  CAS  Google Scholar 

  137. Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684

    Article  PubMed  CAS  Google Scholar 

  138. Runquist D, Hahn-Hagerdal B, Radstrom P (2010) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5

    Article  PubMed  CAS  Google Scholar 

  139. Wisselink HW, Toirkens MJ, Berriel MDF, Winkler AA, van Dijken JP, Pronk JT et al (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Microbiol Biotechnol 73:4881–4891

    CAS  Google Scholar 

  140. Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve l-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 74:2043–2050

    CAS  Google Scholar 

  141. Sanchez RG, Hahn-Hagerdal B, Gorwa-Grauslund MF (2010) Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3

  142. Runquist D, Hahn-Hagerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8

  143. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang XM, Seo JH et al (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504–509

    Article  PubMed  CAS  Google Scholar 

  144. Li SJ, Du J, Sun J, Galazka JM, Glass NL, Cate JHD et al (2010) Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Mol Biosyst 6:2129–2132

    Article  PubMed  CAS  Google Scholar 

  145. Nakamura N, Yamada R, Katahira S, Tanaka T, Fukuda H, Kondo A (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S.cerevisiae via expression of β-glucosidase on its cell surface. Enzyme Microb Technol 43:233–236

    Article  CAS  Google Scholar 

  146. Gurgu L, Lafraya Á, Polaina J, Marín-Navarro J (2011) Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresour Technol 102:5229–5236

    Article  PubMed  CAS  Google Scholar 

  147. Shen Y, Zhang Y, Ma T, Bao XM, Du FG, Zhuang GQ et al (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99:5099–5103

    Article  PubMed  CAS  Google Scholar 

  148. Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamatsu M et al (2010) Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Appl Microbiol Biotechnol 87:1841–1853

    Article  PubMed  CAS  Google Scholar 

  149. Jeon E, Hyeon JE, Eun LS, Park BS, Kim SW, Lee J et al (2009) Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera β-glucosidase. FEMS Microbiol Lett 301:130–136

    Article  PubMed  CAS  Google Scholar 

  150. Apiwatanapiwat W, Murata Y, Kosugi A, Yamada R, Kondo A, Arai T et al (2011) Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Appl Microbiol Biotechnol 90:377–384

    Article  PubMed  CAS  Google Scholar 

  151. Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H et al (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388

    Article  PubMed  CAS  Google Scholar 

  152. Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T et al (2010) Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 5:449–455

    Article  PubMed  CAS  Google Scholar 

  153. Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl WH (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299

    Article  CAS  Google Scholar 

  154. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26

    Article  PubMed  CAS  Google Scholar 

  155. Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104:911–919

    Article  PubMed  CAS  Google Scholar 

  156. Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    Article  PubMed  CAS  Google Scholar 

  157. Sridhar M, Sree NK, Rao LV (2002) Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresour Technol 83:199–202

    Article  PubMed  CAS  Google Scholar 

  158. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  PubMed  CAS  Google Scholar 

  159. Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ et al (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102:3020–3027

    Article  PubMed  CAS  Google Scholar 

  160. Wang YH, Li Y, Pei XL, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515

    Article  PubMed  CAS  Google Scholar 

  161. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM et al (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  PubMed  CAS  Google Scholar 

  162. Park KS, Lee DK, Lee H, Lee Y, Jang YS, Kim YH et al (2003) Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 21:1208–1214

    Article  PubMed  CAS  Google Scholar 

  163. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  PubMed  CAS  Google Scholar 

  164. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  PubMed  CAS  Google Scholar 

  165. Liu H, Liu K, Yan M, Xu L, Ouyang P (2011) gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol 1–10

  166. Luhe A, Tan L, Wu J, Zhao H (2011) Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification. Biotechnol Lett 1–5

  167. Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    Article  PubMed  CAS  Google Scholar 

  168. Breaking the biological barriers to cellulosic ethanol: a joint research agenda: US Department of Energy, (2005). http://genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml

  169. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98

    Article  PubMed  CAS  Google Scholar 

  170. Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879

    PubMed  CAS  Google Scholar 

  171. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  PubMed  CAS  Google Scholar 

  172. Yeh AI, Huang YC, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199

    Article  CAS  Google Scholar 

  173. O’Dwyer JP, Zhu L, Granda CB, Chang VS, Holtzapple MT (2008) Neural network prediction of biomass digestibility based on structural features. Biotechnol Prog 24:283–292

    Article  PubMed  CAS  Google Scholar 

  174. Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  PubMed  CAS  Google Scholar 

  175. Hong J, Ye XH, Zhang YHP (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23:12535–12540

    Article  PubMed  CAS  Google Scholar 

  176. Kawakubo T, Karita S, Araki Y, Watanabe S, Oyadomari M, Takada R et al (2010) Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol Bioeng 105:499–508

    Article  PubMed  CAS  Google Scholar 

  177. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  PubMed  CAS  Google Scholar 

  178. Várnai A, Viikari L, Marjamaa K, Siika-aho M (2011) Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Bioresour Technol 102:1220–1227

    Article  PubMed  CAS  Google Scholar 

  179. Kumar R, Wyman CE (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103:252–267

    Article  PubMed  CAS  Google Scholar 

  180. Kumar R, Wyman CE (2009) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 25:807–819

    Article  PubMed  CAS  Google Scholar 

  181. Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96:250–258

    Article  PubMed  CAS  Google Scholar 

  182. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176

    Article  CAS  Google Scholar 

  183. Yu B, Chen HZ (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour Technol 101:9114–9119

    Article  CAS  Google Scholar 

  184. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

    Article  PubMed  CAS  Google Scholar 

  185. Brown RF, Agbogbo FK, Holtzapple MT (2010) Comparison of mechanistic models in the initial rate enzymatic hydrolysis of AFEX-treated wheat straw. Biotechnol Biofuels 3:6

    Article  PubMed  CAS  Google Scholar 

  186. Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107:37–51

    Article  PubMed  CAS  Google Scholar 

  187. Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102:1570–1581

    Article  PubMed  CAS  Google Scholar 

  188. Pala H, Mota M, Gama FM (2007) Enzymatic depolymerisation of cellulose. Carbohydr Polym 68:101–108

    Article  CAS  Google Scholar 

  189. Chen Y, Stipanovic A, Winter W, Wilson D, Kim Y-J (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from Natural Science Foundation of China (20976130 and 20806057), the International Science and Technology Cooperation Program (2006DA62400), National Key Technology R&D program (2007BAD42B02), the Ministry of Education (NCET-08-0386 and 200800561004), and Tianjin R&D program (2010-BK17C004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Su, R., Qi, W. et al. Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research. Bioenerg. Res. 4, 225–245 (2011). https://doi.org/10.1007/s12155-011-9125-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9125-7

Keywords

Navigation