Skip to main content

Advertisement

Log in

Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing woody biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively. Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed at 30°C have a lower density and compression strength and a tendency to expand in length after the pelletizing process compared to pellets pressed at 100°C. At low temperatures, surface extractives have a lubricating effect and reduce the friction in the press channel of a pellet mill while no such effect is observed at elevated temperatures. Fuel pellets made from extracted wheat straw have a slightly higher compression strength which might be explained by a better interparticle adhesion in the absence of hydrophobic surface waxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAOSTAT Database (2011) Food and agricultural commodities production. Food and Agricultural Organization of the United Nations. http://faostat.fao.org/site/339/default.aspx. Accessed: 13 Sept 2011

  2. Sokhansanj S, Mani S, Bi X, Zaini P, Tabil LG (2005) Binderless pelletization of biomass. ASAE Annual International Meeting, Tampa Convention Centre, Tampa, FL, July 17–20, Paper Number 056061, 2950 Niles Road, St. Joseph, MI 49085–9659, USA

  3. Smith IE, Probert SD, Stokes RE, Hansford RJ (1977) Briquetting of wheat straw. J Agric Eng Res 22:105–111. doi:10.1016/0021-8634(77)90054-3

    Article  Google Scholar 

  4. Sultana A, Kumar A, Harfield D (2010) Development of agri-pellet production cost and optimum size. Bioresour Technol 101:5609–5621. doi:10.1016/j.biortech.2010.02.011

    Article  PubMed  CAS  Google Scholar 

  5. Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88:1491–1497. doi:10.1016/j.fuel.2009.03.015

    Article  CAS  Google Scholar 

  6. Kaliyan N, Morey RV (2006) Densification characteristics of corn stover and switchgrass. Trans ASABE 52(3):907–920

    Google Scholar 

  7. Serrano C, Monedero E, Lapuerta M, Portero H (2011) Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process Technol 92:699–706. doi:10.1016/j.fuproc.2010.11.031

    Article  CAS  Google Scholar 

  8. Nilsson D, Bernesson S, Hansson P (2010) Pellet production from agricultural raw materials—a systems study. Biomass Bioenergy 35:679–689. doi:10.1016/j.biombioe.2010.10.016

    Article  Google Scholar 

  9. Sultana A, Kumar A (2011) Development of energy and emission parameters for densified form of lignocellulosic biomass. Energy 36:2716–2732. doi:10.1016/j.energy.2011.02.012

    Article  CAS  Google Scholar 

  10. Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30:648–654. doi:10.1016/j.biombioe.2005.01.004

    Article  Google Scholar 

  11. Skøt T (2011) Straw to energy—status, technologies and innovation in Denmark 2011. Agro Business Park A/S, Tjele

    Google Scholar 

  12. Verma VK, Bram S, Delattin F et al (2011) Agro-pellets for domestic heating boilers: standard laboratory and real life performance. Appl Energy. doi:10.1016/j.apenergy.2010.12.079

  13. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour Technol 101:1082–1090. doi:10.1016/j.biortech.2009.08.064

    Article  PubMed  CAS  Google Scholar 

  14. Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011) A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 35:910–918. doi:10.1016/j.biombioe.2010.11.003

    Article  CAS  Google Scholar 

  15. Lu F, Ralph J (2010) Lignin. In: Sun RC (ed) Cereal straws as a resource for sustainable biofuels and biomaterials. Elsevier, Amsterdam, pp 169–207

    Chapter  Google Scholar 

  16. Heredia-Guerrero JA, Benitez JJ, Heredia A (2008) Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis. Bioessays 30:273–277. doi:10.1002/bies.20716

    Article  PubMed  CAS  Google Scholar 

  17. Bikerman JJ (1967) Causes of poor adhesion—weak boundary layers. Ind Eng Chem 59:40–44. doi:10.1021/ie51403a010

    Article  CAS  Google Scholar 

  18. Bikerman JJ (1961) The science of adhesive joints. Academic, New York

    Google Scholar 

  19. Bouajila J, Dole P, Joly C, Limare A (2006) Some laws of a lignin plasticization. J Appl Polym Sci 102:1445–14451. doi:10.1002/app.24299

    Article  CAS  Google Scholar 

  20. Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure–property relationships. J Pulp Paper Sci 24:99–103

    CAS  Google Scholar 

  21. Kelley SS, Rials TG, Glasser WG (1987) Relaxation behavior of the amorphous components of wood. J Mater Sci 22:617–624. doi:10.1007/BF01160778

    Article  CAS  Google Scholar 

  22. Olsson AM, Salmen L (1992) Viscoelasticity of in situ lignin as affected by structure: softwood vs. hardwood. In: Glasser W (ed) Viscoelasticity of biomaterials. American Chemical Society, Washington, pp 133–143

    Chapter  Google Scholar 

  23. Sjostrom E (1983) Wood chemistry: fundamentals and applications. Academic, London

    Google Scholar 

  24. Stelte W, Holm JK, Sanadi AR, Ahrenfeldt J, Henriksen UB (2011) Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11):3285–3290. doi:10.1016/j.fuel.2011.05.011

    Article  CAS  Google Scholar 

  25. Holm JK, Henriksen UB, Wand K, Hustad JE, Posselt D (2007) Experimental verification of novel pellet model using a single pelleter unit. Energy Fuel 21:2446–2449. doi:10.1021/ef070156l

    Article  CAS  Google Scholar 

  26. Nielsen NPK, Holm JK, Felby C (2009) Effect of fiber orientation on compression and frictional properties of sawdust harticles in fuel pellet production. Energy Fuel 23:3211–3216. doi:10.1021/ef800923v

    Article  CAS  Google Scholar 

  27. Merk S, Blume A, Riederer M (1998) Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy. Planta 204:44–53

    Article  CAS  Google Scholar 

  28. Stelte W, Clemons C, Holm JK, Ahrenfeldt J, Henriksen UB, Sanadi AR (2011) Thermal transitions of the amorphous polymers in wheat straw. Ind Crop Prod 34:1053–1056. doi:10.1016/j.indcrop.2011.03.014

    Article  CAS  Google Scholar 

  29. Nielsen NPK, Gardner DJ, Felby C (2010) Effect of extractives and storage on the pelletizing process of sawdust. Fuel 89:94–98. doi:10.1016/j.fuel.2009.06.025

    Article  CAS  Google Scholar 

  30. Holm JK, Stelte W, Posselt D, Ahrenfeldt J, Henriksen UB (2011) Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior. Energy Fuel 25:3706–3711. doi:10.1021/ef2005628

    Article  CAS  Google Scholar 

  31. Holm JK, Henriksen UB, Hustad JE, Sorensen LH (2006) Toward an understanding of controlling parameters in softwood and hardwood pellets production. Energy Fuel 20:2686–2694. doi:10.1021/ef0503360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was conducted under the framework of the Danish Energy Agency’s EFP project: “Advanced understanding of biomass pelletization” ENS-33033-0227. The authors wish to thank Vattenfall Nordic A/S, DONG Energy A/S and the Danish Energy Agency for project funding. The USDA-Forest Products Laboratory in Madison, Wisconsin is thanked for its hospitality and the provision of laboratory space and equipment for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stelte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelte, W., Clemons, C., Holm, J.K. et al. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties. Bioenerg. Res. 5, 450–458 (2012). https://doi.org/10.1007/s12155-011-9169-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9169-8

Keywords

Navigation