Skip to main content

Advertisement

Log in

Variation in Cell Wall Composition and Accessibility in Relation to Biofuel Potential of Short Rotation Coppice Willows

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Short rotation coppice (SRC) willow is currently emerging as an important dedicated lignocellulosic energy crop in the UK. However, investigation into the variation between species and genotypes in their suitability for liquid transport biofuel processing has been limited. To address this, four traits relevant to biofuel processing (composition, enzymatic saccharification, response to pretreatment and projected ethanol yields) were studied in 35 genotypes of willow including Europe’s leading SRC willow cultivars. Large, genotype-specific variation was observed for all four traits. Significant positive correlations were identified between the accessibility of glucan to enzymatic saccharification before and after pretreatment as well as glucose release and xylose release via acid hydrolysis during pretreatment. Of particular interest is that the lignin content of the biomass did not correlate with accessibility of glucan to enzymatic saccharification. The genotype-specific variations identified have implications for SRC willow breeding and for potential reductions in both the net energy expenditure and environmental impact of the lignocellulosic biofuel process chain. The large range of projected ethanol yields demonstrate the importance of feedstock selection based on an ideotype encompassing the performance of both field biomass growth and ease of conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25(2):135–146. doi:10.1016/S0961-9534(02)00192-7

    Article  Google Scholar 

  2. Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–370. doi:10.1111/j.1469-8137.2008.02396.x

    Article  PubMed  Google Scholar 

  3. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411

    Article  Google Scholar 

  4. Willebrand E, Ledin S, Verwijst T (1993) Willow coppice systems in short-rotation forestry—effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioenergy 4(5):323–331

    Article  Google Scholar 

  5. Bergkvist P, Ledin S (1998) Stem biomass yields at different planting designs and spacings in willow coppice systems. Biomass Bioenergy 14(2):149–156

    Article  CAS  Google Scholar 

  6. Sennerby-Forsse L (1995) Growth processes. Biomass Bioenergy 9(1–5):35–43. doi:10.1016/0961-9534(95)00077-1

    Article  Google Scholar 

  7. Weih M, Nordh NE (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23(6):397–413

    Article  Google Scholar 

  8. Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44(10):3932–3939. doi:10.1021/Es902405a

    Article  PubMed  CAS  Google Scholar 

  9. Sage R, Cunningham M, Haughton AJ, Mallott MD, Bohan DA, Riche A et al (2010) The environmental impacts of biomass crops: use by birds of miscanthus in summer and winter in southwestern England. Ibis 152(3):487–499

    Article  Google Scholar 

  10. Berg A (2002) Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ 90(3):265–276. doi:S0167-8809(01)00212-2

    Article  Google Scholar 

  11. Anderson GQA, Fergusson MJ (2006) Energy from biomass in the UK: sources, processes and biodiversity implications. Ibis 148:180–183

    Article  Google Scholar 

  12. Sage R, Cunningham M, Boatman N (2006) Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148:184–197

    Article  Google Scholar 

  13. EU RED Directive 2009/28/EC (2009). Official Journal of the European Union L 140/16 (Brussels): Belgium: European Commission

  14. RFA (2009) The Renewable Transport Fuel Obligations Order 2007 (as amended). RFA. http://www.renewablefuelsagency.gov.uk/sites/renewablefuelsagency.gov.uk/files/_documents/RTFO_Order_as_amended_April_2009.pdf

  15. Guidi W, Tozzini C, Bonari E (2009) Estimation of chemical traits in poplar short-rotation coppice at stand level. Biomass Bioenergy 33(12):1703–1709

    Article  CAS  Google Scholar 

  16. Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart LB (2009) Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content for the selection of shrub willow bioenergy crop varieties. BioEnerg Res 2(1–2):1–9. doi:10.1007/s12155-008-9028-4

    Article  Google Scholar 

  17. Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45(3):820–831. doi:10.2135/cropsci2004.0191

    Article  CAS  Google Scholar 

  18. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157. doi:10.1016/j.tibtech.2007.02.009

    Article  PubMed  CAS  Google Scholar 

  19. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefin-Biofpr 2(1):26–40. doi:10.1002/Bbb.49

    Article  CAS  Google Scholar 

  20. Eklund R, Galbe M, Zacchi G (1995) The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresource Technol 52(3):225–229

    Article  CAS  Google Scholar 

  21. Eklund R, Galbe M, Zacchi G (1988) 2-stage steam pretreatment of willow for increased pentose yield. J Wood Chem Technol 8(3):379–392

    Article  CAS  Google Scholar 

  22. Palmqvist E, HahnHagerdal B, Galbe M, Zacchi G (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym Microb Technol 19(6):470–476

    Article  CAS  Google Scholar 

  23. Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzym Microb Technol 39(4):756–762. doi:10.1016/j.enzmictec.2005.12.010

    Article  CAS  Google Scholar 

  24. Sassner P, Galbe M, Zacchi G (2005) Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl Biochem Biotechnol 121:1101–1117

    Article  PubMed  Google Scholar 

  25. Sassner P, Martensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresour Technol 99(1):137–145. doi:10.1016/j.biortech.2006.11.039

    Article  PubMed  CAS  Google Scholar 

  26. Argus G (1997) Infrageneric classification of Salix (Salicaceae) in the new world. Syst Bot Monogr 52:1–121

    Article  Google Scholar 

  27. Trybush S, Jahodova S, Macalpine W, Karp A (2008) A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species. BioEnerg Res 1(1):67–79. doi:10.1007/s12155-008-9007-9

    Article  Google Scholar 

  28. Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of Samples for Compositional Analysis. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,

  29. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of Extractives in Biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,

  30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton S et al (2008) Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,

  31. Selig M, Weiss N, Ji Y (2008) Enzymatic Saccharification of Lignocellulosic Biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory NREL,

  32. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G et al (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63(5):537–542. doi:10.1007/s00253-003-1393-5

    Article  PubMed  CAS  Google Scholar 

  33. GenStat® (2008) © Lawes Agricultural Trust Rothamsted Research, 11th edn. VSN, UK

    Google Scholar 

  34. Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agr Food Chem 58(16):9054–9062. doi:10.1021/Jf100807b

    CAS  Google Scholar 

  35. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD et al (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17(8):808–812

    Article  PubMed  CAS  Google Scholar 

  36. Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34(3):351–362

    Article  PubMed  CAS  Google Scholar 

  37. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M et al (2011) Lignin content in natural Populus variants affects sugar release. P Natl Acad Sci USA 108(15):6300–6305. doi:10.1073/pnas.1009252108

    Article  CAS  Google Scholar 

  38. Mortimer JC, Miles GP, Brown DM, Zhang ZN, Segura MP, Weimar T et al (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. P Natl Acad Sci USA 107(40):17409–17414. doi:10.1073/pnas.1005456107

    Article  CAS  Google Scholar 

  39. Selig MJ, Tucker MP, Sykes RW, Reichel KL, Brunecky R, Himmel ME et al (2010) Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol 6(2):104. doi:10.1089/ind.2010.0009

    Article  CAS  Google Scholar 

  40. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10. doi:10.1016/j.biortech.2003.10.005

    Article  PubMed  CAS  Google Scholar 

  41. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels, Bioprod Biorefin 2:58–73

    Article  CAS  Google Scholar 

  42. Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–9:133–142

    Article  Google Scholar 

  43. Li JB, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068. doi:10.1016/j.biortech.2006.10.018

    Article  PubMed  CAS  Google Scholar 

  44. Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345(7):965–970. doi:10.1016/j.carres.2010.02.010

    Article  PubMed  CAS  Google Scholar 

  45. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24(3–4):151–159

    Article  CAS  Google Scholar 

  46. RoyalSociety (2008) Sustainable biofuels: prospects and challenges. The Royal Society, 6–9 Carlton House Terrace

  47. Stephenson AL, Dupree P, Scott SA, Dennis JS (2010) The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresour Technol 101(24):9612–9623. doi:10.1016/j.biortech.2010.07.104

    Article  PubMed  CAS  Google Scholar 

  48. Brereton NJB, Pitre FE, Hanley SJ, Ray MJ, Karp A, Murphy RJ (2010) QTL mapping of enzymatic saccharification in short rotation coppice willow and its independence from biomass yield. BioEnerg Res 3(3):251–261. doi:10.1007/s12155-010-9077-3

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support for this research from the BBSRC Sustainable Bioenergy Centre (BSBEC), working within the BSBEC BioMASS (http://www.bsbec-biomass.org.uk/) Programme of the centre. Further funding support from the Rothamsted Bioenergy and Climate Change Institute Strategic Programme Grant and from the Porter Alliance (http://www.porteralliance.org.uk) was provided for a studentship awarded to N.J.B. Brereton. The authors would also like to thank William MacAlpine, Tim Barraclough and March Castle for their assistance in harvesting and measuring the trees used in this work. Rothamsted Research receives grant aid from the Bio-technology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Murphy.

Additional information

Michael J. Ray and Nicholas J.B. Brereton contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, M.J., Brereton, N.J.B., Shield, I. et al. Variation in Cell Wall Composition and Accessibility in Relation to Biofuel Potential of Short Rotation Coppice Willows. Bioenerg. Res. 5, 685–698 (2012). https://doi.org/10.1007/s12155-011-9177-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9177-8

Keywords

Navigation