Skip to main content
Log in

Efficient Acetone–Butanol–Ethanol Production from Corncob with a New Pretreatment Technology—Wet Disk Milling

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Acetone–butanol–ethanol (ABE) production from corncob was achieved using an integrated process combining wet disk milling (WDM) pretreatment with enzymatic hydrolysis and fermentation by Clostridium acetobutylicum SE-1. Sugar yields of 71.3 % for glucose and 39.1 % for xylose from pretreated corncob were observed after enzymatic hydrolysis. The relationship between sugar yields and particle size of the pretreated corncob was investigated, suggesting a smaller particle size benefits enzymatic hydrolysis with the WDM pretreatment approach. Analysis of the correlation between parameters representing particle size and efficiency of enzymatic hydrolysis predicted that frequency 90 % is the best parameter representing particle size for the indication of the readiness of the material for enzymatic hydrolysis. ABE production from corncob was carried out with both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using C. acetobutylicum SE-1. Interestingly, when considering the time for fermentation as the time for ABE production, a comparable rate of sugar consumption and ABE production in the SHF process (0.55 g/l·h sugar consumption and 0.20 g/l·h ABE production) could be observed when glucose (0.50 g/l·h sugar consumption and 0.17 g/l·h ABE production) or a mixture of glucose and xylose (0.68 g/l·h sugar consumption and 0.22 g/l·h ABE production) mimicking the corncob hydrolysate was used as the substrate for fermentation. This result suggested that the WDM is a suitable pretreatment method for ABE production from corncob owing to the mild conditions. A higher ABE production rate could be observed with the SSF process (0.15 g/l·h) comparing with SHF process (0.12 g/l·h) when combining the time for saccharification and fermentation and consider it as the time for ABE production. This is possibly a result of low sustained sugar level during fermentation. These investigations lead to the suggestion that this new WDM pretreatment method has the potentials to be exploited for efficient ABE production from corncob.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

WDM:

Wet disk milling

SHF:

Separate hydrolysis and fermentation

SSF:

Simultaneous saccharification and fermentation

ABE:

Acetone–butanol–ethanol

References

  1. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  2. Garciaa V, Päkkiläa J, Ojamob H, Muurinena E, Keiskia RL (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energy Rev 15:964–980

    Article  Google Scholar 

  3. Gabriel CL (1928) Butanol fermentation process. Ind Eng Chem 20:1063–1067

    Article  CAS  Google Scholar 

  4. Gabriel CL, Crawford FM (1930) Development of the butyl-acetonic fermentation industry. Ind Eng Chem 22:1163–1165

    Article  CAS  Google Scholar 

  5. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50(4):484–524

    PubMed  CAS  Google Scholar 

  6. Wang L, Chen HZ (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46:604–607

    Article  CAS  Google Scholar 

  7. Bai D, Li S, Liu ZC, Cui Z (2008) Enhanced l-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Appl Biochem Biotech 144(1):79–85

    Article  CAS  Google Scholar 

  8. Parekh SR, Parekh RS, Wayman M (1988) Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzyme Microb Tech 10(11):660–668

    Article  CAS  Google Scholar 

  9. Soni BK, Das K, Ghose TK (1982) Bioconversion of agro-wastes into acetone butanol. Biotechnol Lett 4(1):19–22

    Article  CAS  Google Scholar 

  10. Marchal R, Rebeller M, Vandecasteel JP (1984) Direct bioconversion of alkali-pretreated straw using simultaneous enzymatic hydrolysis and acetone–butanol fermentation. Biotechnol Lett 6(8):523–528

    Article  CAS  Google Scholar 

  11. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  PubMed  CAS  Google Scholar 

  12. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulose on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  PubMed  CAS  Google Scholar 

  13. Zanoelo FF, Polizeli Md Mde L, Terenzi HF, Jorge JA (2004) Purification and biochemical properties of a thermostable xylose-tolerant beta-d-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 31(4):170–176. doi:10.1007/s10295-004-0129-6

    Article  PubMed  CAS  Google Scholar 

  14. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  PubMed  CAS  Google Scholar 

  15. Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels 1(1):2

    Article  PubMed  Google Scholar 

  16. Huang R, Su RX, Qi W, He Z (2011) Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. Bioenergy Res 4(4):225–245

    Article  Google Scholar 

  17. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  PubMed  CAS  Google Scholar 

  18. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S et al (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100:2706–2711

    Article  PubMed  CAS  Google Scholar 

  19. Lee SH, Chang F, Inoue S, Endo T (2010) Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresour Technol 101:7218–7223

    Article  PubMed  CAS  Google Scholar 

  20. Silva ASA, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409

    Article  Google Scholar 

  21. Qureshi N, Blaschek HP (1999) Butanol recovery from model solutions/fermentation broth by pervaporation: evaluation of membrane performance. Biomass Bioenerg 17:175–184

    Article  CAS  Google Scholar 

  22. Cai BY, Ge JP, Ling HZ, Cheng KK, Ping WX (2012) Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production. Biomass Bioenerg 36:250–257

    Article  CAS  Google Scholar 

  23. Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101(13):4959–4964

    Article  PubMed  CAS  Google Scholar 

  24. Cheng KK, Wang W, Zhang JA, Zhao Q, Li JP, Xue JW (2011) Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresour Technol 102(3):3014–3019

    Article  PubMed  CAS  Google Scholar 

  25. Endo T, Tanaka N, Sakai M, Teremoto Y, Lee SH (2006) Enhancement mechanism of enzymatic hydrolysis saccharification of wood by mechanochemical treatment. In: Proceedings of the third biomass-Asia workshop, Tokyo and Tsukuba, p 105

  26. Zhu J, Wang G, Pan X, Gleisner R (2009) Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 64:474–485

    Article  CAS  Google Scholar 

  27. Kim YA, Hayashi T, Fukai Y, Endo M, Yanagisawa T, Dresselhaus MS (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355(3–4)

    Google Scholar 

  28. Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83(6):1035–1043

    Article  PubMed  CAS  Google Scholar 

  29. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950

    Article  PubMed  CAS  Google Scholar 

  30. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469

    Article  PubMed  CAS  Google Scholar 

  31. Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A (2008) Evaluation of dilute-acid pretreated bagasse, corncob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Annal Microbiol 58(2):219–225

    Article  CAS  Google Scholar 

  32. Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y et al (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12(5):446–454

    Article  PubMed  CAS  Google Scholar 

  33. Bahl H, Andersch W, Braun K, Gottschalk G (1982) Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Appl Microbiol Biotechnol 14(1):17–20

    Article  CAS  Google Scholar 

  34. Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104(3):238–240

    Article  PubMed  CAS  Google Scholar 

  35. Zhang MJ, Su RX, Li Q, Qi W, He ZM (2011) Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenergy Res 4:134–14034

    Article  Google Scholar 

  36. Zhu JY, Zhu W, Obryan P, Dien BS, Tian S, Gleisner R et al (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86:1355–1365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Key Technology R&D Program of China (No. 2011BAD22B02), National Basic Research Program of China (973 Program) (No. 2011CB707403), International Science and Technology Cooperation Program of China (No. 2010DFA32560), and Program for New Century Excellent Talents in University. Mr. Jie Zhang would like to thank the New Energy Foundation for providing AIST (National Institute of Advanced Industrial Science and Technology) Biomass-Asia Fellowship. We thank Miss Yanmei Dong for her contribution during HPLC and protein analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, M., Gao, M. et al. Efficient Acetone–Butanol–Ethanol Production from Corncob with a New Pretreatment Technology—Wet Disk Milling. Bioenerg. Res. 6, 35–43 (2013). https://doi.org/10.1007/s12155-012-9226-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9226-y

Keywords

Navigation