Skip to main content

Advertisement

Log in

Consolidated Bioprocessing of Lignocellulosic Feedstocks for Ethanol Fuel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Ethanol fuel can be produced renewably from numerous plant and waste materials, but harnessing the energy of lignocellulosic feedstocks has been particularly challenging in the development of this alternative fuel as a substitute for petroleum-based fuels. Consolidated bioprocessing has the potential to make the conversion of biomass to fuel an economical process by combining enzyme production, polysaccharide hydrolysis, and sugar fermentation into a single unit operation. This consolidation of steps takes advantage of the synergistic nature of enzyme systems but requires the use of one or a few organisms capable of producing highly efficient cellulolytic enzymes and fermenting most of the resulting sugars to ethanol with minimal byproduct formation while tolerating high levels of ethanol. In this review, conventional ethanol production, consolidated bioprocessing, and simultaneous saccharification and fermentation are described and compared. Several wild-type and genetically engineered microorganisms, including strains of Clostridium thermocellum, Saccharomyces cerevisiae, Klebsiella oxytoca, Escherichia coli, Flammulina velutipes, and Zymomonas mobilis, among others, are highlighted for their potential in consolidated bioprocessing. This review examines the favorable and undesirable qualities of these microorganisms and their enzyme systems, process engineering considerations for particular organisms, characteristics of cellulosomes, enzyme engineering strategies, progress in commercial development, and the impact of these topics on current and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CBP:

Consolidated bioprocessing

SSF:

Simultaneous saccharification and fermentation

EtOH:

Ethanol

References

  1. Whitten GZ (2004) Air quality and ethanol in gasoline. In: Proceedings of the 9th Annual National Ethanol Conference, 17 February 2004

  2. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600. doi:10.1126/science.1133306

    Article  PubMed  CAS  Google Scholar 

  3. Dewulf J, Van Langenhove H, Van De Velde B (2005) Exergy-based efficiency and renewability assessment of biofuel production. Environ Sci Technol 39:3878–3882. doi:10.1021/es048721b

    Article  PubMed  CAS  Google Scholar 

  4. Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation. Energy 31:3362–3380

    Article  CAS  Google Scholar 

  5. Bromberg L, Cohn D, Heywood J (2006) Calculations of knock suppression in highly turbocharged Gasoline/ethanol engines using direct ethanol injection. Dissertation, Massachusetts Institute of Technology

  6. Lynd LR, Cushman JH, Nichols RJ et al (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323. doi:10.1126/science.251.4999.1318

    Article  PubMed  CAS  Google Scholar 

  7. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Env Sci Biotechnol 1:105–114. doi:10.1023/A:1020858910646

    Article  CAS  Google Scholar 

  8. McLaughlin S, Bouton J, Bransby D et al (1999) Developing switchgrass as a bioenergy crop. ASHS, Alexandria

    Google Scholar 

  9. De La Rosa LB, Reshamwala S, Latimer VM et al (1994) Integrated production of ethanol fuel and protein from coastal bermudagrass. Appl Biochem Biotechnol 45–46:483–497. doi:10.1007/bf02941823

    Article  Google Scholar 

  10. Han JS (1998) Properties of nonwood fibers. Proc of the Korean Society of Wood Science and Technology Annual Meeting, Seoul, South Korea, 24–25 April 1998

  11. Northcote D, Goulding K, Horne R (1958) The chemical composition and structure of the cell wall of Chlorella pyrenoidosa. Biochem J 70:391–397

    PubMed  CAS  Google Scholar 

  12. Scurlock J (2005) Bioenergy feedstock characteristics. Oak Ridge National Laboratory. http://bioenergy.ornl.gov/papers/misc/biochar_factsheet.html. Accessed 27 July 2010

  13. Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16:577–583. doi:10.1016/j.copbio.2005.08.009

    Article  PubMed  CAS  Google Scholar 

  14. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371. doi:10.1016/j.copbio.2009.05.006

    Article  PubMed  CAS  Google Scholar 

  15. Qureshi N, Saha BC, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II—fed-batch fermentation. Biomass Bioenerg 32:176–183

    Article  CAS  Google Scholar 

  16. Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—batch fermentation. Biomass Bioenerg 32:168–175. doi:10.1016/j.biombioe.2007.07.004

    Article  CAS  Google Scholar 

  17. van Zyl WH, den Haan R, la Grange DC (2011) Developing organisms for consolidated bioprocessing of biomass to ethanol. In: Bernardes MA (ed) Biofuel Production-Recent Developments and Prospects, 1st edn. InTech, 137–162

  18. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/MMBR.66.3.506-577.2002

    Article  PubMed  CAS  Google Scholar 

  19. Olson DG, McBride JE, Joe Shaw A et al (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405. doi:10.1016/j.copbio.2011.11.026

    Article  PubMed  CAS  Google Scholar 

  20. Kim S, Dale BE (2003) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375. doi:10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  21. Reijnders L (2008) Ethanol production from crop residues and soil organic carbon. Resour Conserv Recycling 52:653–658. doi:10.1016/j.resconrec.2007.08.007

    Article  Google Scholar 

  22. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. doi:10.1016/s0960-8524(01)00212-7

    Article  PubMed  CAS  Google Scholar 

  23. Wayman M, Chen S, Doan K (1992) Bioconversion of waste paper to ethanol. Proc Biochem 27:239–245. doi:10.1016/0032-9592(92)80024-w

    Article  CAS  Google Scholar 

  24. Walsh ME, De La Torre Ugarte DG, Shapouri H et al (2003) Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environ Resour Econ 24:313–333. doi:10.1023/a:1023625519092

    Article  Google Scholar 

  25. Zhang YP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. doi:10.1016/j.biotechadv.2006.03.003

    Article  CAS  Google Scholar 

  26. Saha BC (2000) Alpha-L-arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  PubMed  CAS  Google Scholar 

  27. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. doi:10.1007/s10295-003-0049-x

    Article  PubMed  CAS  Google Scholar 

  28. Nigam J (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27. doi:10.1016/s0168-1656(00)00385-0

    Article  PubMed  CAS  Google Scholar 

  29. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228. doi:10.1016/s1369-5274(03)00056-0

    Article  PubMed  CAS  Google Scholar 

  30. Northcote DH (1972) Chemistry of the plant cell wall. Annu Rev 23:113–132. doi:10.1146/annurev.pp.23.060172.000553

    CAS  Google Scholar 

  31. Thomson JA (1993) Microbiology of xylan degradation. FEMS Microbiol Rev 104:65–82. doi:10.1111/j.1574-6968.1993.tb05864.x

    Article  CAS  Google Scholar 

  32. Doran JB (1994) Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol Bioeng 44:240–247. doi:10.1002/bit.260440213

    Article  PubMed  CAS  Google Scholar 

  33. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218. doi:10.1007/bf00365615

    Article  CAS  Google Scholar 

  34. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  PubMed  CAS  Google Scholar 

  35. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. doi:10.1016/j.biotechadv.2008.11.001

    Article  PubMed  CAS  Google Scholar 

  36. Creuzet NJ, Berenger F, Frixon C (1983) Characterization of exoglucanase and synergistic hydrolysis of cellulose in Clostridium stercorarium. FEMS Microbiol Lett 20:347–350. doi:10.1111/j.1574-6968.1983.tb00145.x

    Article  CAS  Google Scholar 

  37. Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nature Biotechnol 3:722–726. doi:10.1038/nbt0885-722

    Article  CAS  Google Scholar 

  38. Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013

    Article  PubMed  CAS  Google Scholar 

  39. Sousa LC, Chundawat SPS, Balan V et al (2009) ′Cradle-to-grave′ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347. doi:10.1016/j.copbio.2009.05.003

    Article  CAS  Google Scholar 

  40. Zadrazil F, Puniya (1995) Studies on the effect of particle size on solid-state fermentation of sugarcane bagasse into animal feed using white-rot fungi. Bioresour Technol 54:85–87. doi:10.1016/0960-8524(95)00119-0

    Article  CAS  Google Scholar 

  41. Ishizawa CI, Davis MF, Schell DF, Johnson DK (2007) Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem 55:2575–2581. doi:10.1021/jf062131a

    Article  PubMed  CAS  Google Scholar 

  42. Fan LT, Lee YH, Beardmore DR (2004) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23:419–424. doi:10.1002/bit.260230215

    Article  Google Scholar 

  43. Change VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37. doi:10.1385/ABAB:84-86:1-9:5

    Article  Google Scholar 

  44. Besle JM, Cornu A, Jouany JP (2006) Roles of structural phenylpropanoids in forage cell wall digestion. J Sci Food Agr 64:171–190. doi:10.1002/jsfa.2740640206

    Article  Google Scholar 

  45. Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl Biochem Biotechnol 121–124:1081–1099. doi:10.1007/978-1-59259-991-2_91

    Article  PubMed  Google Scholar 

  46. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL. http://www1.eere.energy.gov/biomass/pdfs/32438.pdf. Accessed 4 August 2012

  47. Northey RA, Glasser WG, Schultz TP et al (1999) Lignin: historical, biological, and materials perspectives. American Chemical Society, Washington

    Google Scholar 

  48. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. doi:10.1016/0141-0229(95)00237-5

    Article  CAS  Google Scholar 

  49. Alvo P, Belkacemi K (1997) Enzymatic saccharification of milled timothy (Phleum pratense l.) and alfalfa (Medicago sativa L.). Bioresour Technol 61:185–198. doi:10.1016/S0960-8524(97)00068-0

    Article  CAS  Google Scholar 

  50. Sidiras D, Koukios E (1989) Acid saccharification of ball milled straw. Biomass 19:289–306

    Article  CAS  Google Scholar 

  51. Tassinari T, Macy C, Spano L (1980) Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotech Bioeng 22:1689–1705. doi:10.1002/bit.260220811

    Article  CAS  Google Scholar 

  52. Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:85–90. doi:10.1590/S0104-14282005000200005

    Article  Google Scholar 

  53. Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882. doi:10.1007/978-1-59259-991-2_74

    Article  PubMed  Google Scholar 

  54. Pan X, Gilkes N, Kadla J et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. doi:10.1002/bit.20905

    Article  PubMed  CAS  Google Scholar 

  55. Moxley G, Zhu Z, Zhang YP (2008) Efficient sugar release by cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56:7885–7890. doi:10.1021/jf801303f

    Article  PubMed  CAS  Google Scholar 

  56. Zhang YP, Ding S, Mielenz JR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223. doi:10.1002/bit.21386

    Article  PubMed  CAS  Google Scholar 

  57. Joglekar HG, Rahman I, Kulkarni BD (2007) The path ahead for ionic liquids. Chem Eng Technol 30:819–828. doi:10.1002/ceat.200600287

    Article  CAS  Google Scholar 

  58. Swatloski RP, Spear SK, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. doi:10.1021/ja025790m

    Article  PubMed  CAS  Google Scholar 

  59. Brownell HH, Saddler JN (1984) Steam explosion pretreatment for enzymatic hydrolysis. Biotechnol Bioeng Symp 14:55–68

    CAS  Google Scholar 

  60. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746. doi:10.1002/bit.21436

    Article  PubMed  CAS  Google Scholar 

  61. Sendlich E, Laser M, Kim S et al (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–8435. doi:10.1016/j.biortech.2008.02.059

    Article  CAS  Google Scholar 

  62. García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613. doi:10.1016/j.biortech.2008.09.012

    Article  PubMed  CAS  Google Scholar 

  63. Grethlein HE (1984) Pretreatment for enhanced hydrolysis of cellulosic biomass. Biotechnol Adv 2:43–62. doi:10.1016/0734-9750(84)90240-4

    Article  PubMed  CAS  Google Scholar 

  64. Tian M, Wen J, MacDonald D, Asmussen RM, Chen A (2010) A novel approach for lignin modification and degradation. Electrochem Commun 12:527–530. doi:10.1016/j.elecom.2010.01.035

    Article  CAS  Google Scholar 

  65. Bak J, Ko J, Choi I et al (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482. doi:10.1002/bit.22423

    Article  PubMed  CAS  Google Scholar 

  66. Pal M, Calvo A, Terron M et al (1995) Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor. World J Microb Biot 11:541–545. doi:10.1007/bf00286370

    Article  CAS  Google Scholar 

  67. Novozymes (2010) Basic technologies: recombinant expression. http://www.novozymes.com/en/innovation/our-technology/basic-technologies/recombinant-expression/Pages/for-the-experts-.aspx. Accessed 8 April 2012

  68. Xiros C, Katapodis P, Christakopoulos P (2009) Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw. Bioresour Technol 100:5362–5365. doi:10.1016/j.biortech.2009.05.065

    Article  PubMed  CAS  Google Scholar 

  69. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557. doi:10.1016/S0959-440X(98)80143-7

    Article  PubMed  CAS  Google Scholar 

  70. Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozyme®-process). J Biotechnol 53:163–202. doi:10.1016/S0168-1656(97)01683-0

    Article  CAS  Google Scholar 

  71. Wang W, Huang F, Mei Lu X, Ji Gao P (2006) Lignin degradation by a novel peptide, Gt factor, from brown rot fungus Gloeophyllum trabeum. Biotechnol J 1:447–453. doi:10.1002/biot.200500016

    Article  PubMed  CAS  Google Scholar 

  72. Cantarella L, Alfani F, Cantarella M (1993) Stability and activity of immobilized hydrolytic enzymes in two-liquid-phase systems: acid phosphatase, beta-glucosidase, and beta-fructofuranosidase entrapped in poly (2-hydroxyethyl methacrylate) matrices. Enzyme Microb Technol 15:861–867

    Article  PubMed  CAS  Google Scholar 

  73. McBride J, Delault KM, Lynd LR, Pronk JT (2010) Recombinant yeast strains expressing tethered cellulase enzymes. US Patent 0075363 A1

  74. Chinn MS, Nokes SE, Strobel HJ (2007) Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Bioresour Technol 98:2184–2193. doi:10.1016/j.biortech.2006.08.033

    Article  PubMed  CAS  Google Scholar 

  75. Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 84:465–475. doi:10.1007/s00253-009-1979-7

    Article  PubMed  CAS  Google Scholar 

  76. Lee D, Yu AHC, Saddler JN (2004) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45:328–336. doi:10.1002/bit.260450407

    Article  Google Scholar 

  77. Zhu Z, Sathitsuksanoh N, Percival YH (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272. doi:10.1039/B906065K

    Article  PubMed  CAS  Google Scholar 

  78. Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26:100–106. doi:10.1016/S0968-0004(00)01755-2

    Article  PubMed  CAS  Google Scholar 

  79. Bloom JD, Meyer MM, Meinhold P, Otey CR, MacMillan D, Arnold FH (2005) Evolving strategies for enzyme engineering. Curr Opin Struc Biol 15:447–452. doi:10.1016/j.sbi.2005.06.004

    Article  CAS  Google Scholar 

  80. Benkovic SJ, Schiffer SH (2003) A perspective on enzyme catalysis. Science 301:1196–1202. doi:10.1126/science.1085515

    Article  PubMed  CAS  Google Scholar 

  81. Fan Z, Werkman JR, Yuan L (2009) Engineering of a multifunctional hemicellulase. Biotechnol Lett 31:751–757. doi:10.1007/s10529-009-9926-3

    Article  PubMed  CAS  Google Scholar 

  82. Schülein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543:239–252. doi:10.1016/S0167-4838(00)00247-8

    Article  PubMed  Google Scholar 

  83. Kaper T, Brouns SJJ, Geerling ACM, De Vos WM, Van der Oost J (2002) DNA family shuffling of hyperthermostable β-glycosidases. Biochem J 368:461–470. doi:10.1042/BJ20020726

    Article  PubMed  CAS  Google Scholar 

  84. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43. doi:10.1128/mmbr.65.1.1-43.2001

    Article  PubMed  CAS  Google Scholar 

  85. Gibbs MD, Nevalainen KMH, Bergquist PL (2001) Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271:13–20. doi:10.1016/S0378-1119(01)00506-6

    Article  PubMed  CAS  Google Scholar 

  86. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443. doi:10.1016/S0958-1669(03)00099-5

    Article  PubMed  CAS  Google Scholar 

  87. Liu W, Zhang XZ, Zhang Z, Zhang YH (2010) Engineering of Clostridium phytofermentans endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 76:4914–4917. doi:10.1128/AEM.00958-10

    Article  PubMed  CAS  Google Scholar 

  88. Daniel RM (1996) The upper limits of enzyme thermostability. Enzyme Microb Tech 19:74–79. doi:10.1016/0141-0229(95)00174-3

    Article  CAS  Google Scholar 

  89. Verma D (2010) Chloroplast-derived enzyme cocktails hydrolyze lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350. doi:10.1111/j.1467-7652.2009.00486.x

    Article  PubMed  CAS  Google Scholar 

  90. Rosenberg S (1980) Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enzyme Microb Technol 2:185–193. doi:10.1016/0141-0229(80)90045-9

    Article  CAS  Google Scholar 

  91. Hong J (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339. doi:10.1007/s00253-006-0618-9

    Article  PubMed  CAS  Google Scholar 

  92. Preez J, Bosch M, Prior BA (1987) Temperature profiles of growth and ethanol tolerance of the xylose-fermenting yeasts Candida shehatae and Pichia stipitis. Appl Microbiol Biot 25:521–525. doi:10.1007/bf00252010

    Article  Google Scholar 

  93. Alzate CAC, Toro OJS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2447–2459. doi:10.1016/j.energy.2005.10.020

    Article  CAS  Google Scholar 

  94. Stampe S, Alcock R, Westby C et al (1983) Energy consumption of a farm-scale ethanol distillation system. Energy Agric 2:355–368. doi:10.1016/0167-5826(83)90030-x

    Article  CAS  Google Scholar 

  95. Groot WJ, Kraayenbrink MR, Waldram RH et al (1992) Ethanol production in an integrated process of fermentation and ethanol recovery by pervaporation. Bioproc Biosyst Eng 8:99–111. doi:10.1007/bf01254225

    Article  CAS  Google Scholar 

  96. Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotech 11:187–198. doi:10.1016/S0958-1669(00)00085-9

    Article  PubMed  CAS  Google Scholar 

  97. Walsum GP, Lynd LR (1998) Allocation of ATP to synthesis of cells and hydrolytic enzymes in cellulolytic fermentative microorganisms: bioenergetics, kinetics, and bioprocessing. Biotechnol Bioeng 58:316–320. doi:10.1002/(SICI)1097-0290(19980420)5

    Article  PubMed  Google Scholar 

  98. Zamboni N, Fendt SM, Ruhl M et al (2009) C-13-based metabolic flux analysis. Nat Protoc 4:878–892. doi:10.1038/nprot.2009.58

    Article  PubMed  CAS  Google Scholar 

  99. Desai SG, Guerinot ML, Lynd LR (2004) Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biot 65:600–605. doi:10.1007/s00253-004-1575-9

    Article  CAS  Google Scholar 

  100. Drinnenberg IA, Weinberg DE, Xie KT et al (2009) RNAi in budding yeast. Science 326:544–550. doi:10.1126/science.1176945

    Article  PubMed  CAS  Google Scholar 

  101. Shaw J, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. P Natl Acad Sci USA 105:13769–13774. doi:10.1073/pnas.0801266105

    Article  CAS  Google Scholar 

  102. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533. doi:10.1007/s00253-002-1158-6

    PubMed  CAS  Google Scholar 

  103. Zyl WH, Lynd LR, Haan R et al (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Engr/Biotechnol 108:205–235. doi:DOI:10.1007/10_2007_061

    Article  CAS  Google Scholar 

  104. Preez J, Bosch M, Prior B (1986) The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 23:228–233. doi:10.1007/bf00261920

    Article  Google Scholar 

  105. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. Int J Biol Sci 5:578–595. doi:10.7150/ijbs.5.578

    Article  PubMed  CAS  Google Scholar 

  106. Lu Y, Yi-Heng PZ, Lynd LR (2006) Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 103:16165–16169. doi:10.1073/pnas.0605381103

    Article  PubMed  CAS  Google Scholar 

  107. Mitsuzawa S, Kagawa H, Li Y et al (2009) The rosettazyme: a synthetic cellulosome. J Biotechnol 143:139–144. doi:10.1016/j.jbiotec.2009.06.019

    Article  PubMed  CAS  Google Scholar 

  108. Johnson EA, Sakajoh M, Halliwell G et al (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43:1125–1132

    PubMed  CAS  Google Scholar 

  109. Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4:31. doi:10.1186/1752-0509-4-31

    Article  PubMed  CAS  Google Scholar 

  110. Balusu R, Paduru RR, Kuravi SK, Seenayya G, Reddy G (2005) Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem 40:3025–3030. doi:10.1016/j.procbio.2005.02.003

    Article  CAS  Google Scholar 

  111. McBee RH (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67:505–506

    PubMed  CAS  Google Scholar 

  112. Reddy HK, Srijana M, Reddy MD, Reddy G (2010) Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol 9:1926–1934

    Google Scholar 

  113. Viljoen J, Fred E, Peterson W (2009) The fermentation of cellulose by thermophilic bacteria. J Ag Sci 16:1–17. doi:10.1017/S0021859600088249

    Article  Google Scholar 

  114. Zhang YP, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106. doi:10.1128/JB.187.1.99-106.2005

    Article  PubMed  CAS  Google Scholar 

  115. Ng TK (1977) Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 114:1–7. doi:10.1007/bf00429622

    Article  PubMed  CAS  Google Scholar 

  116. Chinn MS, Nokes SE (2008) Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Biotechnol Prog 22:53–59. doi:10.1021/bp050163x

    Article  CAS  Google Scholar 

  117. Dharmagadda VSS, Nokes SE, Strobel HJ, Flythe MD (2010) Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Bioresour Technol 101:6039–6044. doi:10.1016/j.biortech.2010.02.097

    Article  PubMed  CAS  Google Scholar 

  118. Chinn MS, Nokes SE, Strobel HJ (2008) Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Bioresour Technol 99:2664–2671. doi:10.1016/j.biortech.2007.04.052

    Article  PubMed  CAS  Google Scholar 

  119. Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:683–695. doi:10.1007/s10529-006-9299-9

    Article  CAS  Google Scholar 

  120. Lamed RJ (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol 54:1216–1221

    PubMed  CAS  Google Scholar 

  121. Levin DB, Islam R, Cicek N et al (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31:1496–1503. doi:10.1016/j.ijhydene.2006.06.015

    Article  CAS  Google Scholar 

  122. Zertuche L (1982) A study of producing ethanol from cellulose using Clostridium thermocellum. Biotechnol Bioeng 24:57–68. doi:10.1002/bit.260240106

    Article  PubMed  CAS  Google Scholar 

  123. Stevenson DM, Weimer PJ (2005) Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl Environ Microbiol 71:4672–4678. doi:10.1128/aem.71.8.4672-4678.2005

    Article  PubMed  CAS  Google Scholar 

  124. Bélaich J, Tardif C, Bélaich A, Gaudin C (1997) The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 57:3–14. doi:10.1016/S0168-1656(97)00085-0

    Article  PubMed  Google Scholar 

  125. Lee YE, Lowe SE, Zeikus JG (1993) Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl Environ Microbiol 59:763–771

    PubMed  CAS  Google Scholar 

  126. Gal L, Pages S, Guadin C et al (1997) Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 217:15–22. doi:10.1016/S0378-1097(02)00991-6

    Google Scholar 

  127. Giallo J, Gaudin C, Belaich JP (1985) Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol 49:1216–1221

    PubMed  CAS  Google Scholar 

  128. Reverbel-Leroy C, Pages S, Belaich A et al (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179:56–52

    Google Scholar 

  129. Christakopoulos P, Macris B, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol 11:236–239. doi:10.1016/0141-0229(89)90098-7

    Article  CAS  Google Scholar 

  130. Panagiotou G, Christakopoulos P, Olsson L (2005) Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3—growth characteristics and metabolite profiling. Enzyme Microb Technol 36:693–699. doi:10.1016/j.enzmictec.2004.12.029

    Article  CAS  Google Scholar 

  131. Vleet JHV, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306. doi:10.1016/j.copbio.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  132. Den Haan R, Mcbride JE, Grange DCL, Lynd LR, Zyl WH (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299. doi:10.1016/j.enzmictec.2006.09.022

    Article  CAS  Google Scholar 

  133. Brevnova EE, Rajgarhia V, Mellon M, Warner A, McBride J, Gandhi C, Wiswall E (2012) Heterologous expression of termite cellulases yeast. US Patent 0003701 A1

  134. McBride J, Brevnova E, Mellon M et al. (2012) Yeast expressing cellulases for simultaneous saccharification and fermentation using cellulose. US Patent 0129229 A1

  135. Hong J, Tamaki H, Yamamoto K, Kumagai H (2003) Cloning of a gene encoding a thermo-stable endo-β-1, 4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol Lett 25:657–661. doi:10.1023/A:1023072311980

    Article  PubMed  CAS  Google Scholar 

  136. Den Haan R, Rose SH, Lynd LR, Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94. doi:10.1016/j.ymben.2006.08.005

    Article  CAS  Google Scholar 

  137. Tsai SL, Oh J, Singh S et al (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093. doi:10.1128/AEM.01538-09

    Article  PubMed  CAS  Google Scholar 

  138. Brooks TA, Ingram L (1995) Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol Prog 11:619–625. doi:10.1021/bp00036a003

    Article  CAS  Google Scholar 

  139. Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58:2103–2110

    PubMed  CAS  Google Scholar 

  140. Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilizing yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol 96:155–168. doi:10.1016/S0168-1656(02)00026-3

    Article  PubMed  CAS  Google Scholar 

  141. Rogers P, Lee K, Skotnicki M, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Microb React 23:37–84. doi:10.1007/3540116982_2

    Article  Google Scholar 

  142. Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243. doi:10.1126/science.267.5195.240

    Article  PubMed  CAS  Google Scholar 

  143. Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470

    PubMed  CAS  Google Scholar 

  144. Mizuno R, Ichinose H, Maehara T et al (2009) Properties of ethanol fermentation by Flammulina velutipes. Biosci Biotechnol Biochem 73:2240–2245. doi:10.1271/bbb.90332

    Article  PubMed  CAS  Google Scholar 

  145. Ingram L, Conway T, Clark D et al (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    PubMed  CAS  Google Scholar 

  146. Ohta K, Beall D, Mejia J, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    PubMed  CAS  Google Scholar 

  147. Gonzalez R, Tao H, Purvis J et al (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623. doi:10.1021/bp025658q

    Article  PubMed  CAS  Google Scholar 

  148. Bolshakova E, Ponomariev A, Novikov A, Svetlichnyi VA, Velikodvorskaya GA (1994) Cloning and expression of genes coding for carbohydrate degrading enzymes of Anaerocellum thermophilum in Escherichia coli. Biochem Biophys Res Commun 202:1076–1080. doi:10.1006/bbrc.1994.2038

    Article  PubMed  CAS  Google Scholar 

  149. Faure E, Bagnara C, Belaich A, Belaich JP (1988) Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli. Gene 65:51–58. doi:10.1016/0378-1119(88)90416-7

    Article  PubMed  CAS  Google Scholar 

  150. Zhang D, Lax AR, Raina AK, Bland JM (2009) Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochem Mol Biol 39:516–522. doi:10.1016/j.ibmb.2009.03.006

    Article  PubMed  CAS  Google Scholar 

  151. Durand H, Clanet Gérard M (1988) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb Technol 10:341–346. doi:10.1016/0141-0229(88)90012-9

    Article  CAS  Google Scholar 

  152. Alam M, Gomes I, Mohiuddin G et al (1994) Production and characterization of thermostable xylanases by Thermomyces lanuginosus and Thermoascus aurantiacus grown on lignocelluloses. Enzyme Microb Technol 16:298–302. doi:10.1016/0141-0229(94)90170-8

    Article  CAS  Google Scholar 

  153. Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16. doi:10.1016/S0168-6445(03)00018-4

    Article  PubMed  CAS  Google Scholar 

  154. Anon (2011) Qteros, UMASS announce two IP advances for ethanol-producing microorganism. Clean Technology Business Review. http://biofuels.cleantechnology-business-review.com/news/qteros-umass-announce-two-ip-advances-for-ethanol-producing-microorganism-270611. Accessed 16 July 2012

  155. Blanchard J, Leschine S, Petit E, Fabel J, Schmalisch M (2011) Methods and compositions for improving the production of products in microorganisms. US Patent 7943363

  156. The Republican Editorials (2009) Biofuel startup sticks to its roots. MassLive. http://www.masslive.com/opinion/index.ssf/2009/10/biofuel_startup_sticks_to_its.html. Accessed 16 July 2012

  157. Anon (2011) Q-d'etat at Qteros: CEO McCarthy out, in shock move. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2011/11/18/q-detat-at-qteros-ceo-mccarthy-out-in-shock-move/. Accessed 16 July 2012

  158. Freeman S (2012) Qteros biofuels start-up closes Chicopee facility. MassLive. http://www.masslive.com/news/index.ssf/2012/04/qteros_biofuels_start-up_close.html. Accessed 16 July 2012

  159. Mascoma Corporation (2011) About Us: Our History. http://www.mascoma.com/pages/sub_business07.php. Accessed 17 July 2012

  160. Doran K, Stern L, Pilgrim C (2012) Mascoma and Lallemand ethanol technology announce commercial agreement with Pacific ethanol for drop-in MGT™ yeast product and commercial roll-out progress. Business Wire. http://www.businesswire.com/news/home/20120329005708/en/Mascoma-Lallemand-Ethanol-Technology-Announce-Commercial-Agreement. Accessed 17 July 2012

  161. Fehrenbacher K (2011) Some red flags & numbers in Mascoma’s IPO filing. Gigaom. http://gigaom.com/cleantech/some-red-flags-numbers-in-mascomas-ipo-filing/. Accessed 17 July 2012

  162. Sault Ste. Marie Evening News (2011) Funding secured for Mascoma plant in Kinross. Soo Evening News. http://www.sooeveningnews.com/news/x278310012/Funding-secured-for-Mascoma-plant-in-Kinross. Accessed 17 July 2012

  163. POET (2009) POET plant produces cellulosic ethanol. POET News & Media. http://poet.com/pr/poet-plant-produces-cellulosic-ethanol. Accessed 17 July 2012

  164. Anon (2011) Abengoa secures biomass supply for Kansas cellulosic ethanol project. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2011/04/15/abengoa-secures-biomass-supply-for-kansas-cellulosic-ethanol-project/. Accessed 17 July 2012

  165. Parker M (2011) Range fuels cellulosic ethanol plant fails, U.S. pulls plug. Bloomberg. http://www.bloomberg.com/news/2011-12-02/range-fuels-cellulosic-ethanol-plant-fails-as-u-s-pulls-plug.html. Accessed 17 July 2012

  166. Williams J (2012) Freedom pines biorefinery. LanzaTech. http://www.lanzatech.com/content/freedom-pines-biorefinery. Accessed 17 July 2012

  167. Williams J (2012) Bio Architecture Lab wins 2012 sustainable biofuels award presented by world biofuels markets. Marketwire. http://finance.yahoo.com/news/bio-architecture-lab-wins-2012-142300527.html. Accessed 17 July 2012

  168. Jeffries TW (2005) Ethanol fermentation on the move. Nature Biotechnol 23:40–41

    Article  CAS  Google Scholar 

  169. Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresource Technol 101:4834–4841. doi:10.1016/j.biortech.2009.08.080

    Article  CAS  Google Scholar 

  170. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi:10.1016/j.tibtech.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  171. Soccol CR, Vandenberghe LPS, Medeiros ABP et al (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresource Technol 101:4820–4825. doi:10.1016/j.biortech.2009.11.067

    Article  CAS  Google Scholar 

  172. Easterly J (2002) AES Greenidge bioethanol co-location assessment: final report. National Renewable Energy Laboratory Report NREL/SR-510-33001

  173. Laser M, Jin H, Jayawardhana K, Dale BE, Lynd LR (2009) Projected mature technology scenarios for conversion of cellulosic biomass to ethanol with coproduction thermochemical fuels, power, and/or animal feed protein. Biofuel Bioprod Bior 3:231–246. doi:10.1002/bbb.131

    Article  CAS  Google Scholar 

  174. Laser M, Jin H, Jayawardhana K, Lynd LR (2009) Coproduction of ethanol and power from switchgrass. Biofuel Bioprod Bior 3:195–218. doi:10.1002/bbb.133

    Article  CAS  Google Scholar 

  175. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg 32:422–430. doi:10.1016/j.biombioe.2007.10.014

    Article  CAS  Google Scholar 

  176. Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd-generation biofuel technologies—an overview of current industry and R&D activities. International Energy Agency

  177. Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresource Technol 98:2415–2457. doi:10.1016/j.biortech.2007.01.002

    Article  CAS  Google Scholar 

  178. Leibbrant N (2010) Techno-economic study for sugarcane bagasse to liquid biofuels in South Africa: A comparison between biological and thermochemical process routes. Dissertation, University of Stellenbosch

  179. Reith JH, den Uil H, van Veen H et al. (2002) Co-production of bio-ethanol, electricity and heat from biomass residues. Proc Eur Conf Technol Biomass

  180. Kundu S (1983) Bioconversion of cellulose into ethanol by Clostridium thermocellum-product inhibition. Biotechnol Bioeng 25:1109–1126

    Article  PubMed  CAS  Google Scholar 

  181. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). P Natl Acad Sci USA 106:1368–1373. doi:10.1073/pnas.0812364106

    Article  CAS  Google Scholar 

  182. Murashima K, Kosugi A, Doi RH (2002) Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol 45:617–626. doi:10.1046/j.1365-2958.2002.03049.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this review was provided by the North Carolina Biotechnology Center (NCBC). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the NCBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari S. Chinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, B.G., Chinn, M.S. Consolidated Bioprocessing of Lignocellulosic Feedstocks for Ethanol Fuel Production. Bioenerg. Res. 6, 416–435 (2013). https://doi.org/10.1007/s12155-012-9278-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9278-z

Keywords

Navigation