Skip to main content

Advertisement

Log in

Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The use of lignocellulosic biomass as a renewable energy source is becoming progressively essential. Much attention is focused on identifying suitable biomass species that can provide high energy outputs to replace conventional fossil fuels. The current study emphasizes on some commonly available biomasses in North America such as pinewood, timothy grass, and wheat straw for their usage towards next generation biofuels. Fast pyrolysis of the feedstocks was performed at 450 °C to generate biochars that were further characterized to advocate their energy and agronomic relevance. The biomasses were examined physiochemically to understand their compositional and structural characteristics through analytical approaches such as CHNS (carbon–hydrogen–nitrogen–sulfur), ICP-MS (inductively coupled plasma-mass spectrometry), particle size, FTIR (Fourier transform infrared) and Raman spectroscopy, thermogravimetric and differential thermogravimetric, XRD (X-ray diffraction), and high-pressure liquid chromatography. The chemical composition of feedstocks significantly differed from that of biochars and the variations among feedstock composition were also found to be greater than for biochars. The presence of cellulose, hemicellulose, and lignin along with other organic components were identified in the spectroscopic and chromatographic analysis. The FTIR spectra of biochars showed removal of oxygen- and hydrogen-containing functionalities from feedstocks due to pyrolysis at higher temperature, although retaining certain significant cellulose-derived functionalities. A number of crystallographic phases in the XRD of biomass, ash, and biochars were due to minerals commonly Na, Mg, Al, Ca, Fe, and Mn. ICP-MS of biochars demonstrated substantial amount of alkali elements indicating their compatibility towards soil amendment for restoring degraded soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce. Appl Spectrosc 51:1648–1655. doi:10.1366/0003702971939316

    Article  CAS  Google Scholar 

  2. Anon JAR, Lopez FF, Castineiras JP, Ledo JP, Regueira LN (1995) Calorific values and flammability for forest wastes during the seasons of the year. Bioresour Technol 52:269–274. doi:10.1016/0960-8524(95)00034-C

    Article  Google Scholar 

  3. ASTM D1762-84, ASTM International (2007) Standard test method for chemical analysis of wood charcoal. ASTM International, Pennsylvania. doi:10.1520/D1762-84R07

    Google Scholar 

  4. ASTM D3175-11 (2011) Standard method for volatile matter in the analysis sample of coal and coke. ASTM International, Pennsylvania. doi:10.1520/D3175-11

    Google Scholar 

  5. ASTM D3176-09, ASTM International (2009) Standard practice for ultimate analysis of coal and coke. ASTM International, Pennsylvania. doi:10.1520/D3176-09

    Google Scholar 

  6. ASTM D5373-08 (2008) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal. doi: 10.1520/D5373-08

  7. ASTM E1755-01 (2007) Standard test method for ash in biomass. ASTM International, Pennsylvania. doi:10.1520/E1755-01R07

    Google Scholar 

  8. ASTM E871-82 (2006) Standard test method for moisture analysis of particulate wood fuels. ASTM International, Pennsylvania. doi:10.1520/E0871-82R06

    Google Scholar 

  9. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage 52:858–875. doi:10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  10. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73. doi:10.1016/S1364-0321(99)00007-6

    Article  CAS  Google Scholar 

  11. Brown TR, Wright MM, Brown RC (2011) Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioprod Bioref 5:54–68. doi:10.1002/bbb.254

    Article  CAS  Google Scholar 

  12. Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F et al (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg 35:298–307. doi:10.1016/j.biombioe.2010.08.067

    Article  CAS  Google Scholar 

  13. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. doi:10.1021/es8002684

    Article  PubMed  CAS  Google Scholar 

  14. Correa AC, de Morais TE, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192. doi:10.1007/s10570-010-9453-3

    Article  CAS  Google Scholar 

  15. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469. doi:10.1002/bit.21373

    Article  PubMed  CAS  Google Scholar 

  16. Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behaviour and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62:331–349. doi:10.1016/S0165-2370(01)00129-2

    Article  CAS  Google Scholar 

  17. Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crop Prod 13:193–208. doi:10.1016/S0926-6690(00)00077-7

    Article  CAS  Google Scholar 

  18. French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91:25–32. doi:10.1016/j.fuproc.2009.08.011

    Article  CAS  Google Scholar 

  19. Gronowska M, Joshi S, MacLean HL (2009) A review of US and Canadian biomass supply studies. BioResources 4:341–369

    CAS  Google Scholar 

  20. Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 82:685–696. doi:10.1002/jsfa.1090

    Article  CAS  Google Scholar 

  21. International Panel on Climate Change (IPCC) (2012) Renewable energy sources and climate change mitigation: special report of the Intergovernmental Panel on Climate Change. Technical Support Unit Working Group III. Cambridge University Press, New York

    Google Scholar 

  22. Jensen PA, Frandsen FJ, Dam-Johansen K, Sander B (2000) Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy Fuel 14:1280–1285. doi:10.1021/ef000104v

    Article  CAS  Google Scholar 

  23. Joshi N, Lawal A (2012) Hydrodeoxygenation of pyrolysis oil in a microreactor. Chem Eng Sci 74:1–8. doi:10.1016/j.ces.2012.01.052

    Article  CAS  Google Scholar 

  24. Keown DM, Li X, Ji H, Li CZ (2008) Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Process Technol 89:1429–1435. doi:10.1016/j.fuproc.2008.07.002

    Article  CAS  Google Scholar 

  25. Kim P, Johnson A, Edmunds CW, Radosevich M, Vogt F, Rials TG et al (2011) Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuel 25:4693–4703. doi:10.1021/ef200915s

    Article  CAS  Google Scholar 

  26. Kudahettige RL, Holmgren M, Imerzeel P, Sellstedt A (2012) Characterization of bioethanol production from hexoses and xylose by the white rot fungus Trametes versicolor. Bioenerg Res 5:277–285. doi:10.1007/s12155-011-9119-5

    Article  CAS  Google Scholar 

  27. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g

    Article  CAS  Google Scholar 

  28. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. doi:10.1016/S0168-1656(97)00073-4

    Article  PubMed  CAS  Google Scholar 

  29. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403. doi:10.1016/j.cej.2009.10.061

    Article  CAS  Google Scholar 

  30. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi:10.1016/j.biortech.2009.10.066

    Article  PubMed  CAS  Google Scholar 

  31. Lopez-Buendia AM, Whateley MKG, Bastida J, Urquiola MM (2007) Origins of mineral matter in peat marsh and peat bog deposits, Spain. Int J Coal Geol 71:246–262. doi:10.1016/j.coal.2006.09.001

    Article  CAS  Google Scholar 

  32. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. doi:10.1016/S0960-8524(01)00118-3

    Article  PubMed  CAS  Google Scholar 

  33. Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel 20:848–889. doi:10.1021/ef0502397

    Article  CAS  Google Scholar 

  34. Moore AK, Owen NL (2002) Infrared spectroscopic studies of solid wood. Appl Spectrosc Rev 36:65–86. doi:10.1081/ASR-100103090

    Article  Google Scholar 

  35. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561. doi:10.1104/pp.110.161281

    Article  PubMed  CAS  Google Scholar 

  36. Obernberger I, Brunner T, Barnthaler G (2006) Chemical properties of solid biofuels—significance and impact. Biomass Bioenerg 30:973–982. doi:10.1016/j.biombioe.2006.06.011

    Article  CAS  Google Scholar 

  37. Ozcimen D, Ersoy-Mericboyu A (2010) Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew Energ 35:1319–1324. doi:10.1016/j.renene.2009.11.042

    Article  CAS  Google Scholar 

  38. Pettersson A, Zevenhoven M, Steenari BM, Amand LE (2008) Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes. Fuel 87:3183–3193. doi:10.1016/j.fuel.2008.05.030

    Article  CAS  Google Scholar 

  39. Putun E (2010) Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy 35:2761–2766. doi:10.1016/j.energy.2010.02.024

    Article  Google Scholar 

  40. Saarela KE, Harjua L, Rajander J, Lill JO, Heselius SJ, Lindroos A et al (2005) Elemental analyses of pine bark and wood in an environmental study. Sci Total Environ 343:231–241. doi:10.1016/j.scitotenv.2004.09.043

    Article  PubMed  CAS  Google Scholar 

  41. Sarkar S, Adhikari B (2001) Synthesis and characterization of lignin–HTPB copolyurethane. Eur Polym J 37:1391–1401. doi:10.1016/S0014-3057(00)00264-0

    Article  CAS  Google Scholar 

  42. Siengchum T, Isenberg M, Chuang SSC (2012) Fast pyrolysis of coconut biomass—an FTIR study. Fuel. doi:10.1016/j.fuel.2012.09.039

  43. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  44. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical report NREL/TP-510-42623. National Renewable Energy Laboratory (NREL), Colorado

  45. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008b) Determination of extractives in biomass. Technical report NREL/TP-510-42619. National Renewable Energy Laboratory (NREL), Colorado

  46. Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J (2010) Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J Anal Appl Pyrol 87:1–7. doi:10.1016/j.jaap.2009.09.003

    Article  CAS  Google Scholar 

  47. Tamaki Y, Mazza G (2010) Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. Ind Crop Prod 31:534–541. doi:10.1016/j.indcrop.2010.02.004

    Article  CAS  Google Scholar 

  48. Theegala CS, Midgett JS (2012) Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment. Bioresour Technol 107:456–463. doi:10.1016/j.biortech.2011.12.061

    Article  PubMed  CAS  Google Scholar 

  49. Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98:22–28. doi:10.1016/j.biortech.2005.12.005

    Article  PubMed  CAS  Google Scholar 

  50. United States Energy Information Administration (USEIA) (2011) International Energy Outlook 2011. http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf. Accessed 03 Jan 2012

  51. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. doi:10.1016/j.fuel.2009.10.022

    Article  CAS  Google Scholar 

  52. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. doi:10.1016/j.fuel.2011.09.030

    Article  CAS  Google Scholar 

  53. Vassilev SV, Braekman-Danheux C, Laurent P (1999) Characterization of refuse-derived char from municipal solid waste. 1. Phase-mineral and chemical composition. Fuel Process Technol 59:95–134. doi:10.1016/S0378-3820(99)00017-X

    Article  CAS  Google Scholar 

  54. Werkelin J, Skrifvars BJ, Hupa M (2005) Ash-forming elements in four Scandinavian wood species. Part. 1. Summer harvest. Biomass Bioenerg 29:451–466. doi:10.1016/j.biombioe.2005.06.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanda, S., Mohanty, P., Pant, K.K. et al. Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenerg. Res. 6, 663–677 (2013). https://doi.org/10.1007/s12155-012-9281-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9281-4

Keywords

Navigation