Skip to main content
Log in

Viability of Plant–Pathogenic Fungi Reduced by Anaerobic Digestion

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Feedstock of anaerobic digestion infected with phytopathogens could enhance the risk of spreading those pathogens to uninfested field through digestate. The viability of Fusarium proliferatum, Fusarium verticillioides, Sclerotinia sclerotiorum, and Rhizoctonia solani was investigated in anaerobic digestion experiments using infected plant material of sorghum (Sorghum bicolor), sugar beet (Beta vulgaris subsp. vulgaris var. altissima), and potato (Solanum tuberosum L.). Results from lab-scale reactors were confirmed in full-scale biogas plants. Anaerobic digestion under mesophilic conditions (35–42 °C) reduced most of the phytopathogens of feedstocks investigated. Thus, S. sclerotiorum and R. solani lost their viability within 6 h. In the case of sorghum, however, Fusarium spp. infected feedstock required a maximum of 138 h for sanitation. Thus, the risk of spreading plant pathogens with the digestate can only be decreased when the feedstock would undergo an additional treatment before anaerobic digestion or of the resulting digestate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atkinson D, Thornton MK, Miller JS (2010) Development of Rhizoctonia solani on stems, stolons and tubers of potatoe. I. Effect of inoculum source. Am J Potato Res 87:374–381

    Article  Google Scholar 

  2. Banville GJ (1989) Yield losses and damage to potato plants caused by Rhizoctonia solani Kühn. Am J Potato Res 66:821–834

    Article  Google Scholar 

  3. Bøtner A, Belsham GJ (2012) Virus survival in slurry: analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses. Vet Microbiol 157:41–49

    Article  PubMed  Google Scholar 

  4. Funnell-Harris DL, Pedersen JF (2011) Presence of Fusarium spp. in air and soil associated with sorghum fields. Plant Dis 95:648–656

    Article  Google Scholar 

  5. Gerlach W, Nirenberg H (1982) The genus Fusarium—a pictorial atlas. Mitt Biol Bundesanst Land Forstwirtsch Berl Dahlem 209:1–406

    Google Scholar 

  6. Gilligan CA, Simons SA, Hide GA (1996) Inoculum density and spatial pattern of Rhizoctonia solani in field plots of Solanum tuberosum: effect of cropping frequency. Plant Pathol 45:232–244

    Article  Google Scholar 

  7. Goberna M, Podmirseg SM, Waldhuber S, Knapp BA, García C, Insam H (2011) Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Appl Soil Ecol 49:18–25

    Article  Google Scholar 

  8. Heiermann M, Plöchl M, Linke B, Schelle H, Herrmann C (2009) Biogas crops—Part 1: specifications and suitability of field crops for anaerobic digestion. Agricultural Engineering International: the CIGR ejournal 11:1–17 (manuscript 1087). http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1123/1192. Accessed 16 Nov 2012

  9. Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technol 102:5153–5161

    Article  CAS  Google Scholar 

  10. Leslie JF, Zeller KA, Lamprecht SC, Rheeder JP, Maracas WFO (2005) Toxicity, pathogenicity, and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology 95:275–283

    Article  PubMed  CAS  Google Scholar 

  11. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12:242–257

    Article  Google Scholar 

  12. Nirenberg H (1976) Untersuchungen über die morphologische Differenzierung der Fusarium-Sektion Liseola. Mitt Biol Bundesanst Land Forstwirtsch Berl Dahlem 169:1–117

    Google Scholar 

  13. Otrysko BE, Banville GJ (1992) Effect of infection by Rhizoctonia solani on the quality of tubers for processing. Am J Potato Res 6:645–652

    Google Scholar 

  14. Saunders O, Harrison J, Fortuna AM, Whitefield E, Bary A (2012) Effect of anaerobic digestion and application method on the presence and survivability of E. coli and fecal coliforms in dairy waste applied to soil. Water Air Soil Pollut 223:1055–1063

    Article  CAS  Google Scholar 

  15. Schleusner Y, Pottberg U, Rodemann B, Büttner C (2011) Gärreste ohne Risiko? DLG Mitteilungen 3/2011

  16. Seigner L, Friedrich R, Kaemmerer D, Büttner P, Poschenrieder G, Hermann A, Gronauer A (2010) Hygienisierungspotenzial des Biogasprozesses. Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft 8, ISSN 1611–4159. http://www.lfl.bayern.de/publikationen/daten/schriftenreihe/p_40223.pdf. Accessed 16 Nov 2012

  17. Schnürer A, Schnürer J (2006) Fungal survival during anaerobic digestion of organic household waste. Waste Manage 26:1205–1211

    Article  Google Scholar 

  18. Termorshuizen AJ, Volker D, Blok WJ, ten Brummeler E, Hartog BJ, Janse JD, Knol W, Wenneker M (2003) Survival of human and plant pathogens during anaerobic mesophilic digestion of vegetable, fruit and garden waste. Eur J Soil Biol 39:165–171

    Article  Google Scholar 

  19. Turner J, Stafford DA, Hughes DE (1983) The reduction of three plant pathogens (Fusarium, Corynebacterium and Globodera) in anaerobic digesters. Agr Wastes 6:1–11

    Article  CAS  Google Scholar 

  20. Van Overbeek L, Runia W (2011) Phytosanitary risks of reuse of waste streams and treated wastes for agriculture purposes. University of Wageningen, Plant Research International, research report 382. http://edepot.wur.nl/167480. Accessed 16 Nov 2012

  21. VDI (2006) VDI standard procedures 4630: fermentation of organic materials. Characterisation of the substrate, sampling, collection of material data, fermentation tests. Verein Deutscher Ingenieure. Beuth Verlag, Berlin, p 92

    Google Scholar 

  22. Venglovsky J, Sasakova N, Placha I (2009) Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresource Technol 100:5386–5391

    Article  CAS  Google Scholar 

  23. Waśkiewicz A, Beszterda M, Goliński P (2012) Occurrence of fumonisins in food—an interdisciplinary approach to the problem. Food Control 26:491–499

    Article  Google Scholar 

  24. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biot 85:849–860

    Article  CAS  Google Scholar 

  25. Woodhall JW, Lees AK, Edwards SG, Jenkinson P (2007) Characterization of Rhizoctonia solani from potato in Great Britain. Plant Pathol 56:286–295

    Article  CAS  Google Scholar 

  26. Wu BM, Subbarao KV (2008) Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Phytopathology 98:1144–1152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was funded by the German Federal Ministry of Food, Agriculture and Consumer Protection (Projektträger: Fachagentur Nachwachsende Rohstoffe, FKZ: 22013207 and 22028508, “Joint project: Studies on the phytosanitary risk associated with the anaerobic digestion of plant material in biogas plants”). We thank F. Klinkert (Klinkert Bioenergie GmbH, Erding, Germany) for allowing us to conduct experiments at their biogas plant in Wildau, C. Idler for supporting ensiling of crop material, M. Goßmann for supporting the mycological studies, B. Kroschewski for scientific support in data analysis, and T. Vöhringer, D. Hahrt, V. Plogsties, and T. Scharnhorst for insertion of hundreds of germ carriers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Bandte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandte, M., Schleusner, Y., Heiermann, M. et al. Viability of Plant–Pathogenic Fungi Reduced by Anaerobic Digestion. Bioenerg. Res. 6, 966–973 (2013). https://doi.org/10.1007/s12155-013-9326-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9326-3

Keywords

Navigation