Skip to main content

Advertisement

Log in

Italian ryegrass (Lolium multiflorum Lam) as a High-Potential Bio-Ethanol Resource

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cellulosic bioethanol production from lignocellulosic biomass has been recognized as one of the promising sustainable energy source alternatives to petroleum-based fuels, since the lignocelluloses are not directly in competition with food sources. In order to develop a lignocellulosic raw material with high energy crops for bio-ethanol production, we selected Italian ryegrass (Lolium multiflorum Lam). Bio-ethanol production from Italian ryegrass through a low-moisture anhydrous ammonia (LMAA) pretreatment and simultaneous saccharification and co-fermentation (SSCF) was examined. At first, Italian ryegrass was subjected to LMAA pretreatment, which was performed by keeping the moist powdered Italian ryegrass under NH3 gas atmosphere at room temperature for 4 weeks. The effect of LMAA pretreatment was examined for bio-ethanol production through simultaneous saccharification and fermentation (SSF) which was performed at 34 °C using Saccharomyces cerevisiae, cellulase, and xylanase. The yields of ethanol and xylose in SSF were enhanced by LMAA-pretreatment. The SSCF of the LMAA-retreated Italian ryegrass was performed at 36 °C using Escherichia coli KO11, S. cerevisiae, cellulase, and xylanase. The SSCF of LMAA-pretreated Italian ryegrass produced ethanol in higher yield (84.6 %) compared with those of LMAA-pretreated bamboo, rice straw, Napier grass, and silvergrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFEX:

Ammonia fiber explosion pretreatment

CF:

Co-fermentation

E:

Ethanol

G:

Glucose

HF:

Hexose fermentation

LC:

Lignocellulosic materials

LMAA:

Low-moisture anhydrous ammonia pretreatment·

SAA:

Soaking in aqueous ammonia pretreatment

SSF:

Simultaneous saccharification and fermentation

SSCF:

Simultaneous saccharification and co-fermentation

PT:

Pretreatment

X:

Xylose

XF:

Xylose fermentation

References

  1. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    CAS  PubMed  Google Scholar 

  2. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocelluosic materials: a review. BioResources 2:707–728

    CAS  Google Scholar 

  3. Jin M, Gunawan C, Balan V, Lau MW, Dale BE (2012) Simultaneous saccharification and co-fermentation (SSCF) of AFEX™ pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Bioresour Technol 110:587–594

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Zhang WX, You L, Yin LG, Du YH, Yang J (2014) Modified method combining in situ detoxification with simultaneous saccharification and cofermentation (SSCF) as a single step for converting exploded rice straw into ethanol. J Agric Food Chem 62:7486–7495

    Article  CAS  PubMed  Google Scholar 

  5. Erdei B, Galbe M, Zacchi G (2011) Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass Bioenergy 56:506–514

    Article  Google Scholar 

  6. Dien BS, Miller DJ, Hector RE, Dixon RA, Chen F, McCaslin M, Reisen P, Sarath G, Cotta MA (2011) Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol 102:6479–6486

    Article  CAS  PubMed  Google Scholar 

  7. Sun ZY, Tang YQ, Iwanaga T, Sho T, Kida K (2011) Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour Technol 102:10929–10935

    Article  CAS  PubMed  Google Scholar 

  8. Yasuda M, Ishii Y, Ohta K (2014). Napiergrass (Pennisetum purpureum Schumach) as raw material for bioethanol production: pretreatment, saccharification, and fermentation, Biotechnol. Bioprocess Engineer 19:945–950

  9. Guo GL, Chen WH, Chen WH, Men LC, Hwang WS (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour Technol 99:6046–6053

    Article  CAS  PubMed  Google Scholar 

  10. Jin M, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX- treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 101:8171–8178

    Article  CAS  PubMed  Google Scholar 

  11. Xu F, Zhou QA, Sun JX, Liu CF, Ren JL, Sun RC, Curling S, Fowler P, Baird MS (2007) Fractionation and characterization of chlorophyll and lignin from de-juiced Italian ryegrass (Lolium multifolrum) and timothy grass (Phleum pratense). Process Biochem 42:913–918

    Article  CAS  Google Scholar 

  12. Shao T, Oh N, Shimojo M, Masuda Y (2002) Dynamics of early fermentation of Italian ryegrass (Lolium multiflorum Lam.) silage. Asian–Australasian J Anim Sci 15:1606–1610

    Article  Google Scholar 

  13. Attala RH, Vanderhart DL (1984) Native cellulose: A composite of two distinct crystalline forms. Science 223:283–285

    Article  Google Scholar 

  14. Rousselle MA, Nelson ML, Hassenboehler CB Jr, Legendre DC (1976) Liquid-ammonia and caustic mercerization of cotton fibers: changes in fine structure and mechanical propertied. Text Res J 46:304–310

    CAS  Google Scholar 

  15. Teymouri F, Lauerano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018

    Article  CAS  PubMed  Google Scholar 

  16. Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99:529–539

    Article  CAS  PubMed  Google Scholar 

  17. Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol 124:1119–1132

    Article  Google Scholar 

  18. Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH (2009) Ethanol production from rice straw suing optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380

    Article  CAS  PubMed  Google Scholar 

  19. Yoo CG, Nghiem NP, Hicks KB, Kim TH (2011) Pretreatment of corn stover by low moisture anhydrous ammonia (LMAA). Process Bioresour Technol 102:10028–10034

    Article  CAS  PubMed  Google Scholar 

  20. Yasuda M, Miura A, Yuki R, Nakamura Y, Shiragami T, Ishii Y, Yokoi H (2011) The effect of TiO2-photocatalytic pretreatment on the biological production of ethanol from lignocellulosic materials. J Photochem Photobiol A Chem 220:195–199

    Article  CAS  Google Scholar 

  21. Yasuda M, Takeo K, Nagai H, Uto T, Yui T, Matsumoto T, Ishii Y, Ohta K (2013) Enhancement of ethanol production from napiergrass (Pennisetum purpureum Schumach) by a low-moisture anhydrous ammonia pretreatment, J. Sustain Bioenergy Syst 3:179–185

    Article  CAS  Google Scholar 

  22. Yasuda M, Miura A, Shiragami T, Matsumoto J, Kamei I, Ishii Y, Ohta K (2012) Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. J Biosci Bioeng 114:188–192

    Article  CAS  PubMed  Google Scholar 

  23. Yasuda M, Nagai H, Takeo K, Ishii Y, Ohta K (2014) Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). Springer Plus 3:333

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templaton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass, Technical Report, NREL/TP-510 − 42618. National Renewable Energy Laboratory, Golden Colorado

    Google Scholar 

  25. Ohta K, Alterthum F, Ingram LO (1990) Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli. Appl Environ Microbiol 56:463–465

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2002) Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 68:1071–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (C) No 24610055 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Yasuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuda, M., Takenouchi, Y., Nitta, Y. et al. Italian ryegrass (Lolium multiflorum Lam) as a High-Potential Bio-Ethanol Resource. Bioenerg. Res. 8, 1303–1309 (2015). https://doi.org/10.1007/s12155-015-9582-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9582-5

Keywords

Navigation