Skip to main content

Advertisement

Log in

Comparison of Moisture Prediction Models for Stacked Fuelwood

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The objective of this study was to develop, compare and validate model prototypes for estimating the optimal storage time of fuelwood stacks stored outdoors based on average moisture changes. Multivariate models for estimating moisture changes in different drying environments were created for this purpose. Experimental data were gathered during 7 to 14 months for most common wood fuel raw materials. In addition to taking moisture samples manually, load cell-based automated data recording for fuelwood moisture content change estimation proved a feasible option to obtain data for fuelwood drying models. The major factors considered in this study for predicting woody biomass moisture content change were precipitation, cumulative precipitation, evaporation, cumulative reference evaporation and fuelwood type. Multivariate drying models can help optimize deliveries of fuelwood and therefore increase the efficiency of the whole fuelwood supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Filbakk T, Hoibo O, Nurmi J (2011) Modelling natural drying efficiency in covered and uncovered piles of broadleaf trees for energy use. Biomass Bioenergy 35(1):150–160

    Article  Google Scholar 

  2. Erber G, Kanzian C, Stampfer K (2012) Predicting moisture content in a pine log wood pile for energy purposes. Silva Fennica 46(4):555–567

    Article  Google Scholar 

  3. Dong-Wook K, Murphy GE (2013) Forecasting air drying rates of small Douglas-fir and hybrid poplar stacked logs in Oregon, USA. Int J For Eng 24(2):137–147

    Google Scholar 

  4. Stokes B.J, Watson and Miller W.F, D.E. (1987) Transpirational drying of energywood, ASAE paper no. 87-1530, St. Joseph, MI: American Society of Agricultural Engineers 13 p

  5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements, Irrigation and drainage paper 56. UN-FAO, Rome, 300

    Google Scholar 

  6. Erber G, Routa J, Wilhelmsson L, Raitila J, Toiviainen M, Riekkinen J and Sikanen L (2014a) A prediction model prototype for estimating optimal storage duration and sorting. Metla Working papers 297, 76 p

  7. Erber G, Routa J, Kolström M, Kanzian C, Sikanen L, Stampfer K (2014) Comparing two different approaches in modeling small diameter energy wood drying in logwood piles. Croatian J For Eng 35(1):15–22

    Google Scholar 

  8. Gigler J, van Loon W, Seres I, Meerdink G, Coumans W (2000) PH—postharvest technology: drying characteristics of willow chips and stems. J Agric Eng Res 77(4):391–400

    Article  Google Scholar 

  9. Persson E, Persson T, Wilhelmsson L (2003) Flexible freshness criteria for pulpwood—tools to utilize the variation in drying rate of roundwood, Arbetsrapport 537 “Raw Material Utilization”, Proceedings from 2nd Forest Engineering Conference. Skogforsk, Uppsala, p 10

    Google Scholar 

  10. Wilhelmsson L, Persson E, Persson T (2005) Predicting the drying rate in harvested roundwood, (Prognoser för virkets uttorkning efter avverkning), Resultat 11. Skogforsk, Uppsala, p 4 (In Swedish with English summary)

    Google Scholar 

  11. AEBIOM (2008) Wood fuels handbook. Production, quality requirements and trading. Intelligent Energy Europe. EIE/07/054. 83 p

  12. Neußer H, Krames U and Streba H (1981) Ausarbeitung einer Methode zur Holzübernahme nach Gewicht. Österreichisches Holzforschungsinstitut (In German), 22 p

  13. Röser D, Erkkilä A, Mola-Yudego B, Sikanen L, Prinz R, Heikkinen H, Kaipainen H, Oravainen H, Hillebrand H, Emer B and Väätäinen K (2010) Natural drying methods to promote fuel quality enhancement of small energywood stems. Metla working papers 186. 60 p

  14. Routa J, Kolström M, Ruotsalainen J, Sikanen L (2015) Precision measurement of forest harvesting residue moisture change and dry matter losses by constant weight monitoring. Int J For Eng. doi:10.1080/14942119.2015.1012900

    Google Scholar 

  15. EN 14774-3: (2009) Solid biofuels. Determination of moisture content. Oven dry method. Part 3: Moisture in general analysis sample

  16. EN 14780: (2011) Solid biofuels. Sample preparation

  17. EN 14778: (2011) Solid biofuels. Sampling

  18. Liang T, Khan MA, Meng Q (1996) Spatial and temporal effects in drying biomass for energy. Biomass Bioenergy 10(5/6):353–360

    Article  CAS  Google Scholar 

  19. Simpson WT, Wang X (2004) Estimating air-drying times of small-diameter ponderosa pine and Douglas-fir logs. For Prod J 54(12):24–28

    Google Scholar 

  20. Sikanen L, Röser D, Anttila P, Prinz R (2012) Forecasting algorithm for natural drying of energy wood in forest storages. For Energy Observer 27:7

    Google Scholar 

  21. Murphy G, Kent T, Kofman PD (2012) Modeling air drying of Sitka spruce (Picea sitchensis) biomass in off-forest storage yards in Ireland. For Prod J 62(6):443–449

    Google Scholar 

  22. Hakkila P (1962) Polttohakepuun kuivuminen metsässä (Drying of fuelwood in forest). Commun Ins Forestalis Fenniaie 54:56, In Finnish

    Google Scholar 

  23. Gislerud O (1974) Helttreutnyttelse.II Biomasse og biomasseegenskaper hos tynnigsvirke av gran, furu, bjork og or. Rapp Norsk Inst Skogforsk 6(74):1–59

    Google Scholar 

  24. Kärkkäinen M (1976) Puun ja kuorentiheys ja kosteus sekä kuoren osuus koivun, kuusen ja männyn oksissa (Density and moisture of wood and bark and proportion of bark in branches of spruce and pine). Silva Fennica 10:212–236 (In Finnish)

    Article  Google Scholar 

  25. Nisula P (1980) Näkökohtia polttohakkeen kuivaamisesta (Drying of fuelwood chips). Folia Forestalia 440 (In Finnish)

  26. Nurmi J, Hillebrand K (2007) The characteristics of whole-tree fuel stocks from silvicultural cleanings and thinnings. Biomass Bioenergy 31(6):381–392

    Article  Google Scholar 

  27. Nurmi J, Lehtimäki J (2011) Debarking and drying of downy birch (Betula pubescence) and Scots pine (Pinus sylvestris) fuelwood in conjunction with multi-tree harvesting. Biomass Bioenergy 35(8):3376–3382

    Article  Google Scholar 

  28. Pettersson M, Nordfjell T (2007) Fuel quality changes during seasonal storage of compacted logging residues and young trees. Biomass Bioenergy 31(11-12):782–792

    Article  CAS  Google Scholar 

  29. Penman H (1948) Natural Evaporation from Open Water, Bare Soil and Grass. DOI: 10.1098/rspa.1948.0037. Proceedings A. Published 22 April 1948. The Royal Publishing House

  30. Jirjis R (1995) Storage and drying of fuelwood. Biomass Bioenergy 9(1):181–190

    Article  Google Scholar 

  31. Hillebrand K (2009) Energiapuun kuivaus ja varastointi, yhteenveto aikaisemmin tehdyistä tutkimuksista (Drying and storage of fuelwood: Summary of previous studies). VTT, Jyväskylä. Research report: VTT-R-07261-09. (In Finnish) 17 p

  32. Heiskanen V.-P, Raitila J and Hillebrand K (2014) Varastokasassa olevan energiapuun kosteuden muutoksen mallintaminen (Modelling of moisture changes of stacked fuelwood). VTT Research Reports VTT-R-08637-13. (In Finnish), 26 p

  33. Heinek S, Mair G, Huber M.B, Hofmann A, Monthaler G, Fuchs H.P, Larch C and Giovannini A (2012) Biomass conditioning: Minimization of the storage related loss of biomass. 20th European Biomass Conference and Exhibition, 18-22 June, Milan, Italy. Conference paper. Proceedings: 116-121

  34. Nurmi J (1999) The storage of logging residue for fuel. Biomass Bioenergy 17(1):41–47

    Article  CAS  Google Scholar 

  35. Otepka P (ed.) (2014) Guidebook on Local Bioenergy Supply Based on Woody Biomass. Scientific & Academic Publishing USA. ISBN: 987-1-938681-99-8. 147 p

  36. Kuusinen M (ed.) (2010) Woodfuel measuring – Guidebook to Finnish practical applications. IEE/08/435/SI2.529239. Task 4.2 D13

  37. Climate Guide (2014) https://ilmasto-opas.fi/en/ilmastonmuutos/suomen-muuttuva-ilmasto/-/artikkeli/3db6d382-8d68-498d-bad9-40c5aedf42e3/hila-aineistojen-tuottaminen.html

  38. Venäläinen A, Heikinheimo M (2002) Meteorological data for agricultural applications. Phys Chem Earth 27:1045–1050

    Article  Google Scholar 

  39. Erber G, Routa J, Sikanen L, Wilhelsson L and Raitila J (2015) Fuel wood drying modelling – the European experience. Forest Engineering Conference Crojfe, Current situation and future challenges, abstract presented on March 18-20. Available from: http://www.crojfe2015.com/r/i/11_CROJFE_2015_Abstract_Erber.pdf

Download references

Acknowledgments

This article was written in cooperation with the INFRES project, which is co-funded by the European Union Seventh Framework Programme. We thank the University of Eastern Finland, the School of Forest Sciences, the Finnish Forest Research Institute, the European Regional Development Fund, the Finnish Funding Agency for Technology and Innovation (Laava – project), the Sustainable Bioenergy Solutions for Tomorrow research programme coordinated by Finnish Bioenergy Cluster Ltd and Cluster for Energy and Environment Ltd, and the European Union Seventh Framework Programme (FP7/2012–2015, INFRES – project 311881) for funding this study. Special thanks go to the research team of Mekrijärvi Research Station for implementing drying rack experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrki Raitila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raitila, J., Heiskanen, VP., Routa, J. et al. Comparison of Moisture Prediction Models for Stacked Fuelwood. Bioenerg. Res. 8, 1896–1905 (2015). https://doi.org/10.1007/s12155-015-9645-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9645-7

Keywords

Navigation