Skip to main content

Advertisement

Log in

Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose, and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately governing the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion, and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction are important research aspects. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  2. Saxena RC, Adhikari DK, Goyal HB (2009) Renew Sust Energ Rev 13:156–167

    Article  CAS  Google Scholar 

  3. Himmel M, Ding S, Johnson D, Adney W, Nimlos M, Brady J, Foust T (2007) Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  4. Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls, basics of structure, chemistry, accessibility and the influence on conversion. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 23–38

    Chapter  Google Scholar 

  5. Yang B, Wyman CE (2008) Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  6. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S Enzym Res 2011 1–17

  7. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  8. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Adv Biochem Eng Biotechnol 108:67–93

    CAS  PubMed  Google Scholar 

  9. Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Biotechnol Biofuels 6:15–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Barakat A, Mayer-Laigle C, Solhy A, Arancon RAD, de Vries H, Luque R (2014) RSC Adv 4:48109–48127

    Article  CAS  Google Scholar 

  11. Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 201–222

    Chapter  Google Scholar 

  12. Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Ind Eng Chem Res 49:1467–1472

    Article  CAS  Google Scholar 

  13. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Biotechnol Bioeng 94:851–861

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) ChemSusChem. doi:10.1002/cssc.201403045

    Google Scholar 

  15. Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP (2006) Appl Biochem Biotechnol 129–132:427–435

    Article  PubMed  Google Scholar 

  16. Chen F, Dixon RA (2007) Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  17. Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F, Dixon RA (2008) Bioenerg Res 1:180–192

    Article  Google Scholar 

  18. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Proc Natl Acad Sci U S A 108:6300–6305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chang VS, Holtzapple MT (2000) Appl Biochem Biotechnol 84–86:5–37

    Article  PubMed  Google Scholar 

  20. Varnái A, Siika-Aho M, Viikari L (2010) Enzym Microb Technol 46:185–193

    Article  CAS  Google Scholar 

  21. Ding SY, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) Science 338:1055–1060

    Article  CAS  PubMed  Google Scholar 

  22. Lacayo CI, Hwang MS, Ding S-Y, Thelen MP (2013) PLoS One 8:e68266. doi:10.1371/journal.pone.0068266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kim SB, Um BH, Park SC (2001) Appl Biochem Biotechnol 91–93:81–84

    Article  PubMed  Google Scholar 

  24. Draude KM, Kurniawan CB, Duff SJB (2001) Bioresour Technol 79:113–120

    Article  CAS  PubMed  Google Scholar 

  25. Ohgren K, Bura R, Saddler J, Zacchi G (2007) Bioresour Technol 98:2503–2510

    Article  PubMed  CAS  Google Scholar 

  26. Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis M (2009) Cellulose 16:677–686

    Article  CAS  Google Scholar 

  27. da Costa Sousa L, Chundawat SPS, Balan V, Dale BE (2009) Curr Opin Biotechnol 20:339–347

    Article  PubMed  CAS  Google Scholar 

  28. Lloyd TA, Wyman CE (2005) Bioresour Technol 96:1967–1977

    Article  CAS  PubMed  Google Scholar 

  29. Kim JS, Lee YY, Torget RW (2001) Appl Biochem Biotechnol 91–93:331–340

    Article  PubMed  Google Scholar 

  30. Sun YE, Cheng JJ (2005) Bioresour Technol 96:1599–1606

    Article  CAS  PubMed  Google Scholar 

  31. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  32. Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S (2010) Appl Biochem Biotechnol 160:539–551

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi N, Okada N, Hirakawa A, Sato T, Kobayashi J, Hatano S, Itaya Y, Mori S (2009) Ind Eng Chem Res 48:373–379

    Article  CAS  Google Scholar 

  34. Kim Y, Mosier NS, Ladisch MR (2009) Biotechnol Prog 25:340–348

    Article  CAS  PubMed  Google Scholar 

  35. Ṕerez JA, Ballesteros I, Ballesteros M, Saez F, Negro MJ, Manzanares P (2008) Fuel 87:3640–3647

    Article  CAS  Google Scholar 

  36. Playne MJ (1984) Biotechnol Bioeng 26:426–433

    Article  CAS  PubMed  Google Scholar 

  37. Chen H, Liu L, Yang X, Li Z (2005) Biomass Bioenergy 28:411–417

    Article  CAS  Google Scholar 

  38. Ewanick SM, Bura R, Saddler JN (2007) Biotechnol Bioeng 98:737–746

    Article  CAS  PubMed  Google Scholar 

  39. Mosier NS, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Bioresour Technol 96:1986–1993

    Article  CAS  PubMed  Google Scholar 

  40. Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana, New York, pp 61–77

    Chapter  Google Scholar 

  41. Chundawat SPS, Venkatesh B, Dale BE (2007) Biotechnol Bioeng 96:219–231

    Article  CAS  PubMed  Google Scholar 

  42. Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, daCosta Sousa L, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Bioresour Technol 101:8429–8438

    Article  CAS  PubMed  Google Scholar 

  43. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Bioresour Technol 96:2014–2018

    Article  CAS  PubMed  Google Scholar 

  44. Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Biotechnol Biofuels 3:1. doi:10.1186/1754-6834-3-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Chundawat SPS, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Energy Environ Sci 4:973–984

    Article  CAS  Google Scholar 

  46. Kim KH, Hong J (2001) Bioresour Technol 77:139–144

    Article  CAS  PubMed  Google Scholar 

  47. Alinia R, Zabihi S, Esmaeilzadeh F, Kalajahi JF (2010) Biosyst Eng 107:61–66

    Article  Google Scholar 

  48. Tassinari T, Macy C, Spano L (1980) Biotechnol Bioeng 22:1689–1705

    Article  CAS  Google Scholar 

  49. Sidiras D, Koukios E (1989) Biomass 19:289–306

    Article  CAS  Google Scholar 

  50. Alvo P, Belkacemi K (1997) Bioresour Technol 61:185–198

    Article  CAS  Google Scholar 

  51. Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Indian J Exp Biol 43:301–312

    CAS  PubMed  Google Scholar 

  52. Xu Z, Huang F (2014) Appl Biochem Biotechnol 174:43–62

    Article  CAS  PubMed  Google Scholar 

  53. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  54. Singh R, Shukla A, Tiwari S, Srivastava M (2014) Renew Sust Energ Rev 32:713–728

    Article  CAS  Google Scholar 

  55. Ke J, Chen S (2014) Biological pretreatment of biomass in wood-feeding termites. In: RSC Energy and Environment Series, 10 (Biological Conversion of Biomass for Fuels and Chemicals), 177-194

  56. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biofuels 1:177–199

    Article  CAS  Google Scholar 

  57. Saritha M, Arora A, Lata (2012) Indian J Microbiol 52:122–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Um BH, Karim MN, Henk LL (2003) Appl Biochem Biotechnol 105:115–125

    Article  PubMed  Google Scholar 

  59. Tian S, Zhu W, Gleisner R, Pan XJ, Zhu JY (2011) Biotechnol Prog 27:419–427

    Article  CAS  PubMed  Google Scholar 

  60. Huang F, Ragauskas AJ (2012) Ind Biotechnol 8:21–30

    Article  CAS  Google Scholar 

  61. Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR (2007) Biotechnol Bioeng 97:265–278

    Article  CAS  PubMed  Google Scholar 

  62. Nitsos CK, Matis KA, Triantafyllidis KS (2013) ChemSusChem 6:110–122

    Article  CAS  PubMed  Google Scholar 

  63. Holopainen-Mantila U, Marjamaa K, Merali Z, Kasper A, de Bot P, Jaaskelainen AS, Waldron K, Kruus K, Tamminen T (2013) Bioresour Technol 138:156–162

    Article  CAS  PubMed  Google Scholar 

  64. Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Process Biochem 41:423–429

    Article  CAS  Google Scholar 

  65. Varga E, Réczey K, Zacchi G (2004) Appl Biochem Biotechnol Part A 114:509–523

    Article  Google Scholar 

  66. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Appl Biochem Biotechnol 130:496–508

    Article  Google Scholar 

  67. Balan V, Sousa LD, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK, Dale BE (2009) Biotechnol Prog 25:365–375

    Article  CAS  PubMed  Google Scholar 

  68. Lee JM, Jameel H, Venditti RA (2010) Bioresour Technol 101:5449–5458

    Article  CAS  PubMed  Google Scholar 

  69. Hu F, Ragauskas AJ (2012) Bionergy Res 5:1043–1066

    Article  CAS  Google Scholar 

  70. Jensen JR, Morinelly JE, Gossen KR, Brodeur-Campbell MJ, Shonnard DR (2010) Bioresour Technol 101:2317–2325

    Article  CAS  PubMed  Google Scholar 

  71. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N et al (2011) Bioresour Technol 102:11052–11062

    Article  CAS  PubMed  Google Scholar 

  72. Sannigrahi P, Kim DH, Jung S, Ragauskas AJ (2011) Energy Environ Sci 4:1306–1310

    Article  CAS  Google Scholar 

  73. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  74. Mosier NS (2013) Fundamental of aqueous pretreatment of biomass. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 129–140

    Chapter  Google Scholar 

  75. Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Process Biochem 38:187–192

    Article  CAS  Google Scholar 

  76. Viola E, Cardinale M, Santarcangelo R, Villone A, Zimbardi F (2008) Biomass Bioenerg 32:613–618

    Article  CAS  Google Scholar 

  77. Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmqvist E, Hahn-Hägerdal B (1998) Appl Biochem Biotechnol Part A 70–72:3–15

    Article  Google Scholar 

  78. Vignon MR, Garcia-Jaldon C, Dupeyre D (1995) Int J Biol Macromol 17:395–404

    Article  CAS  PubMed  Google Scholar 

  79. Boussaid A, Cai Y, Robinson J, Gregg DJ, Nguyen Q, Saddler JN (2001) Biotechnol Prog 17:887–892

    Article  CAS  PubMed  Google Scholar 

  80. Stenberg K, Tengborg C, Galbe M, Zacchi G (1998) J Chem Technol Biotechnol 71:299–308

    Article  CAS  Google Scholar 

  81. Avellar BK, Glasser WG (1998) Biomass Bioenerg 14:205–218

    Article  CAS  Google Scholar 

  82. Samuel R, Pu Y, Jiang N, Fu C, Wang ZY, Ragauskas A (2014) Front Energy Res 1:14

    Article  Google Scholar 

  83. Samuel R, Pu Y, Raman B, Ragauskas AJ (2010) Appl Biochem Biotechnol 162:62–74

    Article  CAS  PubMed  Google Scholar 

  84. Cao S, Pu Y, Studer M, Wyman CL, Ragauskas AJ (2012) RSC Adv 2:10925–10936

    Article  CAS  Google Scholar 

  85. Moxley G, Gaspar AR, Higgins D, Xu H (2012) J Ind Microbiol Biotechnol 39:1289–1299

    Article  CAS  PubMed  Google Scholar 

  86. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Bioenerg Res 1:205–214

    Article  Google Scholar 

  87. Li JB, Gellerstedt G (2008) Ind Crop Prod 27:175–181

    Article  CAS  Google Scholar 

  88. El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Bioresour Technol 101:9321–9329

    Article  PubMed  CAS  Google Scholar 

  89. Pu Y, Cao S, Studer M, Raguaskas AJ, Wyman CE (2010) Chemical characterization of poplar after hot water pretreatment. 32th Symposium on Biotechnology for Fuels and Chemicals, April 19-22, Clearwater Beach, Florida

  90. Samuel R, Cao S, Das BK, Hu F, Pu Y, Ragauskas AJ (2013) RSC Adv 3:5305–5309

    Article  CAS  Google Scholar 

  91. Leschinsky M, Zuckerstaetter G, Weber HK, Patt R, Sixta H (2008) Holzforschung 62:653–658

    CAS  Google Scholar 

  92. Li JB, Henriksson G, Gellerstedt G (2007) Bioresour Technol 98:3061–3068

    Article  CAS  PubMed  Google Scholar 

  93. Heikkinen H, Elder T, Maaheimo H, Rovio S, Rahikainen J, Kruus K, Tamminen T (2014) J Agric Food Chem 62:10437–10444

    Article  CAS  PubMed  Google Scholar 

  94. Li JB, Gellerstedt G, Toven K (2009) Bioresour Technol 100:2556–2561

    Article  CAS  PubMed  Google Scholar 

  95. Kaparaju P, Felby C (2010) Bioresour Technol 101:3175–3181

    Article  CAS  PubMed  Google Scholar 

  96. Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Biotechnol Bioeng 111:485–492

    Article  CAS  PubMed  Google Scholar 

  97. Trajano HL, Engle TN, Foston M, Ragauskas A, Tschaplinski T, Wyman C (2013) Biotechnol Biofuels 6:110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Guo X, Zhang L, Shu S, Hao J (2014) Appl Mech Mater 672–674:154–158

    Article  CAS  Google Scholar 

  99. Yelle DJ, Kaparaju P, Hunt CG, Hirth K, Kim H, Ralph J, Felby C (2013) Bioenerg Res 6:211–221

    Article  CAS  Google Scholar 

  100. Chundawat SPS, Bals B, Campbell T, Sousa L, Gao D, Jin M, Eranki P, Garlock R, Teymouri F, Balan V, Dale BE (2013) Primer on ammoniafiber expansion pretreatment. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, New York, pp 169–200

    Chapter  Google Scholar 

  101. Liu Z, Padmanabhan S, Cheng K, Schwyter P, Pauly M, Bell AT, Prausnitz JM (2013) Bioresour Technol 135:23–29

    Article  CAS  PubMed  Google Scholar 

  102. Azarpira A, Lu F, Ralph J (2011) Org Biomol Chem 9:6779–6787

    Article  CAS  PubMed  Google Scholar 

  103. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Biofuels Bioprod Biorefin 8:836–856

    Article  CAS  Google Scholar 

  104. Vanderghem C, Richel A, Jacquet N, Blecker C, Paquot M (2011) Polym Degrad Stab 96:1761–1770

    Article  CAS  Google Scholar 

  105. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Biotechnol Prog 23:1333–1339

    Article  CAS  PubMed  Google Scholar 

  106. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Biotechnol Bioeng 101:913–925

    Article  CAS  PubMed  Google Scholar 

  107. Pingali SV, Urban VS, Heller WT, McGaughey J, O'Neill H, Foston M, Myles DA, Ragauskas A, Evans BR (2010) Biomacromolecules 11:2329–2335

    Article  CAS  PubMed  Google Scholar 

  108. Lima MA, Lavorente GB, da Silva HK, Bragatto J, Rezende CA, Bernardinelli OD, Deazevedo ER, Gomez LD, McQueen-Mason SJ, Labate CA et al (2013) Biotechnol Biofuels 6:75–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Donaldson LA, Wong KKY, Mackie KL (1988) Wood Sci Technol 22:103–114

    Article  CAS  Google Scholar 

  110. Kallavus U, Gravitis J (1995) Holzforschung 49:182–188

    Article  CAS  Google Scholar 

  111. Muzamal M, Jedvert K, Theliander H, Rasmuson A (2015) Holzforschung 69:61–66

    Article  CAS  Google Scholar 

  112. Coletta VC, Rezende CA, da Conceicao FR, Polikarpov I, Guimaraes FE (2013) Biotechnol Biofuels 6:43–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Zhang M, Chen G, Kumar R, Xu B (2013) Biotechnol Biofuels 6:147–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Langan P, Petridis L, O'Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S et al (2014) Green Chem 16:63–68

    Article  CAS  Google Scholar 

  115. Liu C, Wyman CE (2003) Ind Eng Chem Res 42:5409–5416

    Article  CAS  Google Scholar 

  116. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959–1966

    Article  CAS  PubMed  Google Scholar 

  117. Ciesielski PN, Matthews JF, Tucker MP, Beckham GT, Crowley MF, Himmel ME, Donohoe BS (2013) ACS Nano 7:8011–8019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The work was supported and performed as part of the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Ragauskas.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Hu, F., Huang, F. et al. Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenerg. Res. 8, 992–1003 (2015). https://doi.org/10.1007/s12155-015-9655-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9655-5

Keywords

Navigation