Skip to main content

Advertisement

Log in

Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L.

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Giant reed (Arundo donax) and Miscanthus spp. were tested to evaluate their tolerance and phytoremediation capacity in soils contaminated with heavy metals. Giant reed was tested under 450 and 900 mg Zn kg−1, 300 and 600 mg Cr kg−1, and 450 and 900 mg Pb kg−1 contaminated soils, while the Miscanthus genotypes M. × giganteus, M. sinensis, and M. floridulus were tested on 450 and 900 mg Zn kg−1 contaminated soils, along 2 years. Giant reed biomass production was negatively affected by the contamination; however, yield reduction was only significant under 600 mg Cr kg−1 soil. Zn contamination reduced significantly M. × giganteus production but not M. sinensis or M. floridulus yields. Yet, M. × giganteus was also the most productive. Both grasses can be considered as indicators, once metal concentration in the biomass reflected soil metal concentration. Regarding giant reed experiments, higher modified bioconcentration factors (mBCFs, 0.3–0.6) and translocation factors (TFs, 1.0–1.1) were obtained for Zn, in the contaminated soils, followed by Cr (mBCFs, 0.2–0.4, belowground organs; TFs, 0.2–0.4) and Pb (mBCFs, 0.06–0.07, belowground organs; TFs, 0.2–0.4). Metal accumulation also followed the same pattern Zn > Cr > Pb. Miscanthus genotypes showed different phytoremediation potential facing similar soil conditions. mBCFs (0.3–0.9) and TFs (0.7–1.5) were similar among species, but highest zinc accumulation was observed with M. × giganteus due to the higher biomass production. Giant reed and M. × giganteus can be considered as interesting candidates for Zn phytoextraction, favored by the metal accumulation observed and the high biomass produced. A. donax and Miscanthus genotypes showed to be well suited for phytostabilization of heavy metal contamination as these grasses prevented the leaching of heavy metal and groundwater contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benjamin M, Honeyman B (1992) Trace metals. In: Butcher S, Charlson R, Orians G, Wolfe G (eds) Global biogeochemical cycles. Academic Press Limited, San Diego, pp 317–352

    Chapter  Google Scholar 

  2. Alloway B (1995) Heavy metals in soils. Blackie Academic and Professional Publ, United States of America

    Book  Google Scholar 

  3. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, Boca Raton

    Google Scholar 

  4. Fergusson J (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  5. Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  6. He Z, Yang X, Stoffella P (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  7. Dauber J, Brown C, Fernando A, Finnan J, Krasuska E, Ponitka J, Styles D, Thrän D, Groenigen K, Weih M, Zah R (2012) Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk 7:5–50

    Article  Google Scholar 

  8. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. Article ID 402647, doi:10.5402/2011/402647

  9. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  10. Nsanganwimana F, Marchland L, Douay F, Mench M (2014) Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock, a review. Int J Phytoremediation 16:982–1017

    Article  CAS  PubMed  Google Scholar 

  11. Baker A (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  12. Cunningham S, Ow D (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Bañuelos G, Zambrzuski S, Mackey B (2000) Phytoextraction of Se from soils irrigated with selenium-laden effluent. Plant Soil 224:251–258

    Article  Google Scholar 

  14. Fernando A, Oliveira J (2004) Fitorremediação de solos contaminados com metais pesados—mecanismos, vantagens e limitações. Biologia Vegetal e Agro-Industrial 1:103–114

    Google Scholar 

  15. Raskin I, Kumar P, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  16. Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  17. Yang X, Feng Y, He Z, Stoffella P (2005) Molecular mechanisms of heavy metal hyperacumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  PubMed  Google Scholar 

  18. Fernando AL, Godovikova V, Oliveira JFS (2004) Miscanthus × giganteus: contribution to a sustainable agriculture of a future/present-oriented biomaterial. Materials Science Forum, Advanced Materials Forum II 455–456: 437–441

  19. Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. JHSR 2:1–25

    Google Scholar 

  20. McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    CAS  PubMed  Google Scholar 

  21. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  22. Lewandowski I, Scurlock MOJ, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  23. El Bassam N (2010) Handbook of bioenergy crops. A complete reference to species, development and applications. Earthscan, London

    Google Scholar 

  24. Papazoglou E, Karantounias G, Vemmos S, Bouranis D (2005) Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environ Int 31:243–249

    Article  CAS  PubMed  Google Scholar 

  25. ALAC F (2005) Fitorremediação por Miscanthus × giganteus de solos contaminados com metais pesados, Ph.D. thesis. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal (in Portuguese)

    Google Scholar 

  26. Fernando AL, Duarte MP, Almeida J, Boléo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod Biorefin 4:594–604

    Article  CAS  Google Scholar 

  27. Zhang Y, Li Y, Jiang L, Tian C, Li J, Xiao Z (2011) Potential of perennial crop on environmental sustainability of agriculture. Procedia Environ Sci 10:1141–1147

    Article  Google Scholar 

  28. Barbosa B, Costa J, Fernando AL, Papazoglou EG (2015) Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind Crop Prod 68:17–23

    Article  CAS  Google Scholar 

  29. Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L (2011) Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int J Phytoremediation 13:985–997

    Article  CAS  PubMed  Google Scholar 

  30. Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 2. assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817

    Article  CAS  PubMed  Google Scholar 

  31. Fernando A, Oliveira JS (2004) Effects on growth, productivity and biomass quality of Miscanthus × giganteus of soils contaminated with heavy metals. In: Van Swaaij, WPM, Fjällström T, Helm P, Grassi A (eds) Biomass for Energy, Industry and Climate Protection: Proceedings of the 2nd World Biomass Conference, ETA-Florence e WIP-Munich, pp 387–390

  32. Kausar S, Mahmood Q, Raja IA, Khan A, Sultan S, Gilani MA, Shujaat S (2012) Potential of Arundo donax to treat chromium contamination. Ecol Eng 42:256–259

    Article  Google Scholar 

  33. Pilu R, Bucci A, Badone FC, Landoni M (2012) Giant reed (Arundo donax L.): a weed plant or a promising energy crop? Afr J Biotechnol 11:9163–9174

    Google Scholar 

  34. Decreto-Lei n.°276-2009 (2009) Anexo I, Valores limite de concentração relativos a metais pesados, compostos orgânicos e dioxinas e microrganismos. Diário da República 192:7154–7165 (in Portuguese)

  35. Dyckhoff C, Halliwell L, Haynes R, Watts S (1996) Sampling. In: Watts S, Halliwell L (eds) Essential environmental science, methods and techniques. Routledge, London, pp 31–66

    Google Scholar 

  36. Baize D (2000) Guide des analyses en pedologie, 2nd edn. INRA editions, Paris

    Google Scholar 

  37. Ross DS, Ketterings Q (2011) Recommended methods for determining soil cation exchange capacity—Chapter 9. Recommended Soil Testing Procedures for the Northeastern United States. Cooperative Bulletin No. 493. Available at http://extension.udel.edu/lawngarden/files/2012/10/CHAP9.pdf.

  38. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  39. Watts S, Halliwell L (1996) Appendix 3—detailed field and chemical methods for soil. In: Watts S, Halliwell L (eds) Essential environmental science, methods and techniques. Routledge, London, pp 475–505

    Google Scholar 

  40. Haigh M, Dyckhoff C (1996) Soils. In: Watts S, Halliwell L (eds) Essential environmental science, methods & techniques. Routledge, London, pp 261–303

    Google Scholar 

  41. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture (USDA) Circular 939. U.S. Government Printing Office, Washington

    Google Scholar 

  42. Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from the soil. Proc Soil Sci Soc Am 29:677–678

    Article  CAS  Google Scholar 

  43. ISO 11466 (1995) Soil quality—extraction of trace metals soluble in aqua regia

  44. Iqbal M, Bermond A, Lamy I (2013) Impact of miscanthus cultivation on trace metal availability in contaminated agricultural soils: complementary insights from kinetic extraction and physical fractionation. Chemosphere 91:287–294

    Article  CAS  PubMed  Google Scholar 

  45. Vandecasteele C, Block CB (1993) Modern methods for trace element determination. Wiley, Chichester

    Google Scholar 

  46. Kumar GP, Yadav SK, Thawale PR, Singh SK, Juwarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter—a greenhouse study. Bioresour Technol 99:2078–2082

    Article  CAS  PubMed  Google Scholar 

  47. Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh S, Singh P (2005) Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Appl Ecol Environ Res 3:67–79

    Article  Google Scholar 

  49. Mattina MJI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378

    Article  CAS  PubMed  Google Scholar 

  50. Guo ZH, Miao XF (2010) Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Cent S Univ Technol 17:770–777

    Article  CAS  Google Scholar 

  51. Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134

    Article  CAS  Google Scholar 

  52. Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR (2010) Phytoremediation potencial of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour Technol 101:5815–5819

    Article  CAS  PubMed  Google Scholar 

  53. Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  CAS  PubMed  Google Scholar 

  54. Kacprzak MJ, Rosikon K, Fijalkowski K, Grobelak A (2014) The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci, Article ID 506142, doi:10.1155/2014/506142

  55. Jin X, You S (2015) Soil pollution of abandoned tailings in one zinc antimony mine and heavy metal accumulation characteristics of dominant plants. International Conference on Materials, Environmental and Biological Engineering, Guilin, pp 500–504, March 28–30, MEBE (2015)

    Google Scholar 

  56. Barbosa B, Costa J, Boléo S, Duarte MP, Fernando AL (2016) Phytoremediation of inorganic compounds. In: Ribeiro AB, Mateus EP, Couto N (eds) Electrokinetics across disciplines and continents—new strategies for sustainable development. Springer International Publishing, Switzerland, pp 373–400

    Chapter  Google Scholar 

  57. Fiorentino N, Fagnano M, Adamo P, Impagliazzo A, Mori M, Pepe O, Ventorino V, Zoina A (2013) Assisted phytoextraction of heavy metals: compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora. Ital J Agron 8:244–254

    Google Scholar 

  58. Sabeen M, Mahmood Q, Irshad M, Fareed I, Khan A, Ullah F, Hussain J, Hayat Y, Tabassum S (2013) Cadmium phytoremediation by Arundo donax L. from contaminated soil and water. Int J Biomed Res. Article ID 324830, doi:10.1155/2013/324830

  59. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  60. Decreto Lei n° 236/98 (1998) Normas, critérios e objectivos de qualidade com a finalidade de proteger o meio aquático e melhorar a qualidade das águas em função dos seus principais usos, Diário da República 176: 3676–3722 (in Portuguese).

Download references

Acknowledgments

The authors would like to acknowledge the European Union for financially supporting this work through the Optimization of Perennial Grasses for Biomass Production (OPTIMA) project, Grant Agreement No. 289642, Collaborative project, FP7-KBBE-2011.3.1-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luisa Fernando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, B., Boléo, S., Sidella, S. et al. Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L.. Bioenerg. Res. 8, 1500–1511 (2015). https://doi.org/10.1007/s12155-015-9688-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9688-9

Keywords

Navigation