Skip to main content
Log in

Influence of Process Parameters on Anaerobic Digestion Microbiome in Bioenergy Production: Towards an Improved Understanding

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

During the anaerobic digestion (AD) of waste and production of methane as an alternative fuel, unpredictability and instability of bioreactors are a challenge. Leading cause of such failure is the lack of knowledge about the microbial consortia involved in AD under different process conditions or perturbations during field applications. Over the last decade, microbiome in AD has been extensively studied with culture-independent molecular microbiology techniques, which have shed light into their structure and function. Hence, a critical discussion and consolidation of efforts made in these studies towards linking microbiome to reactor performance are required. This review focuses on how such molecular information can provide improved insight in correlation of microbiome structure and reactor performance to attain a stable and efficient AD. Studies describing microbial community dynamics under different process conditions have been briefly discussed along with the molecular approaches used. Furthermore, interesting developments toward the inclusion of diversity to mathematical modeling of AD systems are discussed. Based on the present state of the advancements, the review endeavors to critically evaluate the current knowledge gaps and research questions that must be resolved in the future in order to address the problem of instability associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Economic UNDo, Affairs S (2015) Population, consumption and the environment, vol 2. United Nations, New York

    Google Scholar 

  2. Report UN (2013) Emerging technologies for wastewater treatment and in-plant wet weather management. EPA, Washington

    Google Scholar 

  3. Batstone DJ, Virdis B (2014) The role of anaerobic digestion in the emerging energy economy. Current opinion in biotechnology. 27:142–149

    Article  CAS  PubMed  Google Scholar 

  4. Selvamurugan M, Doraisamy P, Maheswari M, Valliappan K (2012) Performance evaluation of full-scale upflow anaerobic sludge blanket reactor treating distillery spentwash. Clean Technologies and Environmental Policy. 14(2):267–271

    Article  CAS  Google Scholar 

  5. Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Science & Technology. 57(8)

  6. Boe K, Batstone DJ, Steyer J-P, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water research. 44(20):5973–5980

    Article  CAS  PubMed  Google Scholar 

  7. Graham DW, Smith VH (2004) Designed ecosystem services: application of ecological principles in wastewater treatment engineering. Frontiers in Ecology and the Environment. 2(4):199–206

    Article  Google Scholar 

  8. Talbot G, Topp E, Palin M, Masse D (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water research. 42(3):513–537

    Article  CAS  PubMed  Google Scholar 

  9. Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment, Microbes and Microbial Technology. Springer, Berlin Heidelberg New York, pp. 29–57

    Google Scholar 

  10. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Current Opinion in. Biotechnology. 27:55–64

    CAS  Google Scholar 

  11. Bryant M (1979) Microbial methane production—theoretical aspects. Journal of Animal Science. 48(1):193–201

    Article  CAS  Google Scholar 

  12. Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews Microbiology. 6(8):604–612

    Article  CAS  PubMed  Google Scholar 

  13. Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol. 89(2):303–314

    Article  CAS  PubMed  Google Scholar 

  14. Kundu K, Bergmann I, Hahnke S, Klocke M, Sharma S, Sreekrishnan T (2013) Carbon source—a strong determinant of microbial community structure and performance of an anaerobic reactor. Journal of biotechnology. 168(4):616–624

    Article  CAS  PubMed  Google Scholar 

  15. de los Reyes FL, Weaver JE, Wang L (2015) A methodological framework for linking bioreactor function to microbial communities and environmental conditions. Current opinion in biotechnology. 33:112–118

    Article  CAS  Google Scholar 

  16. Lee S-H, Kang H-J, Lee YH, Lee TJ, Han K, Choi Y, Park H-D (2012) Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. Journal of Environmental Monitoring. 14(7):1893–1905

    Article  CAS  PubMed  Google Scholar 

  17. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences. 108(10):4158–4163

    Article  CAS  Google Scholar 

  18. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal. 3(6):700–714

    Article  PubMed  Google Scholar 

  19. Alvarado A, Montañez-Hernández LE, Palacio-Molina SL, Oropeza-Navarro R, Luévanos-Escareño MP, Balagurusamy N (2014) Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Frontiers in microbiology. 5

  20. Ros M, Franke-Whittle I, Morales A, Insam H, Ayuso M, Pascual J (2013) Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresource technology. 136:1–7

    Article  CAS  PubMed  Google Scholar 

  21. Okabe S, Kindaichi T, Ito T (2004) MAR-FISH: an ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes and environments. 19(2):83–98

    Article  Google Scholar 

  22. Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann K-H, Jünemann S, Kaiser O, Krause L, Tille F (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One. 6(1):e14519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. Journal of biotechnology. 158(4):248–258

    Article  CAS  PubMed  Google Scholar 

  24. Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, Rapp E, Pühler A, Reichl U, Klocke M (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Systematic and applied microbiology. 36(5):330–338

    Article  CAS  PubMed  Google Scholar 

  25. Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels. 5:41–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M (2012) Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol. 79(3):785–799

    Article  CAS  PubMed  Google Scholar 

  27. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature. 499(7459):431–437

    Article  CAS  PubMed  Google Scholar 

  28. Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W-T (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. The ISME journal. 9(8):1710–1722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K (2016) A new view of the tree of life. Nature Microbiology. 1:16048

    Article  PubMed  Google Scholar 

  30. El-Mashad HM, Zeeman G, van Loon WK, Bot G, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technology. 95(2):191–201

    Article  CAS  PubMed  Google Scholar 

  31. Gao W, Leung K, Qin W, Liao B (2011) Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor. Bioresource technology. 102(19):8733–8740

    Article  CAS  PubMed  Google Scholar 

  32. Kundu K, Sharma S, Sreekrishnan TR (2012) Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Bioresour Technol. 118:502–511

    Article  CAS  PubMed  Google Scholar 

  33. O’Reilly J, Lee C, Collins G, Chinalia F, Mahony T, O'Flaherty V (2009) Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. water research 43(14):3365–3374

    Article  PubMed  CAS  Google Scholar 

  34. Guo X, Wang C, Sun F, Zhu W, Wu W (2014) A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresource technology. 152:420–428

    Article  CAS  PubMed  Google Scholar 

  35. Song Y-C, Kwon S-J, Woo J-H (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Research. 38(7):1653–1662

    Article  CAS  PubMed  Google Scholar 

  36. Leitao RC, van Haandel AC, Zeeman G, Lettinga G (2006) The effects of operational and environmental variations on anaerobic wastewater treatment systems: a review. Bioresour Technol. 97(9):1105–1118

    Article  CAS  PubMed  Google Scholar 

  37. Levén L, Eriksson AR, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS microbiology ecology. 59(3):683–693

    Article  PubMed  CAS  Google Scholar 

  38. Pender S, Toomey M, Carton M, Eardly D, Patching JW, Colleran E, O’Flaherty V (2004) Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Research. 38(3):619–630

    Article  CAS  PubMed  Google Scholar 

  39. Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. Journal of bioscience and bioengineering. 111(1):41–46

    Article  CAS  PubMed  Google Scholar 

  40. Regueiro L, Carballa M, Lema JM (2014) Outlining microbial community dynamics during temperature drop and subsequent recovery period in anaerobic co-digestion systems. Journal of biotechnology. 192:179–186

    Article  CAS  PubMed  Google Scholar 

  41. Kundu K, Bergmann I, Klocke M, Sharma S, Sreekrishnan TR (2014) Impact of abrupt temperature increase on the performance of an anaerobic hybrid bioreactor and its intrinsic microbial community. Bioresour Technol 168:72–79

  42. Gutierrez O, Park D, Sharma KR, Yuan Z (2009) Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water research. 43(9):2549–2557

    Article  CAS  PubMed  Google Scholar 

  43. Ahammad SZ, Gomes J, Sreekrishnan T (2008) Wastewater treatment for production of H2S-free biogas. Journal of chemical technology and biotechnology. 83(8):1163–1169

    Article  CAS  Google Scholar 

  44. Hernández M, Rodríguez M (2013) Hydrogen production by anaerobic digestion of pig manure: Effect of operating conditions. Renewable Energy. 53:187–192

    Article  CAS  Google Scholar 

  45. Nakasaki K, Kwon SH, Takemoto Y (2015) An interesting correlation between methane production rates and archaea cell density during anaerobic digestion with increasing organic loading. Biomass and Bioenergy. 78:17–24

    Article  CAS  Google Scholar 

  46. Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microbial ecology. 61(3):595–605

    Article  CAS  PubMed  Google Scholar 

  47. Brauer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature. 442(7099):192–194

    Article  PubMed  CAS  Google Scholar 

  48. Kundu K, Sharma S, Sreekrishnan TR (2013) Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature. Bioresour Technol. 129:538–547

    Article  CAS  PubMed  Google Scholar 

  49. Dogan T, Ince O, Oz NA, Ince BK (2005) Inhibition of volatile fatty acid production in granular sludge from a UASB reactor. Journal of Environmental Science and Health. 40(3):633–644

    Article  CAS  PubMed  Google Scholar 

  50. Chelliapan S, Wilby T, Yuzir A, Sallis PJ (2011) Influence of organic loading on the performance and microbial community structure of an anaerobic stage reactor treating pharmaceutical wastewater. Desalination. 271(1):257–264

    Article  CAS  Google Scholar 

  51. Xiao K, Zhou Y, Guo C, Maspolim Y, Ng W-J (2014) Dynamics of propionic acid degradation in a two-phase anaerobic system. Chemosphere 140:47–53

  52. Scully C, Collins G, O’Flaherty V (2005) Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. Journal of applied microbiology. 99(6):1463–1471

    Article  CAS  PubMed  Google Scholar 

  53. Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water research. 41(1):134–144

    Article  CAS  PubMed  Google Scholar 

  54. Kwon SH, Nakasaki K (2015) Relationship between changes in microbial community and the deterioration of methane fermentation which treats synthetic peptone wastewater. Journal of Industrial and Engineering Chemistry. 21:443–450

    Article  CAS  Google Scholar 

  55. Rincón B, Borja R, González J, Portillo M, Sáiz-Jiménez C (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochemical Engineering Journal. 40(2):253–261

    Article  CAS  Google Scholar 

  56. Batstone DJ, Keller J, Blackall L (2004) The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Research. 38(6):1390–1404

    Article  CAS  PubMed  Google Scholar 

  57. Fang H (2000) Microbial distribution in UASB granules and its resulting effects. Water Science & Technology. 42(12):201–208

    CAS  Google Scholar 

  58. Saravanan V, Sreekrishnan T (2008) A mathematical model for a hybrid anaerobic reactor. Journal of environmental management. 88(1):136–146

    Article  CAS  PubMed  Google Scholar 

  59. McHugh S, Carton M, Mahony T, O'Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS microbiology letters. 219(2):297–304

    Article  CAS  PubMed  Google Scholar 

  60. Lee C, Kim J, Hwang K, O'Flaherty V, Hwang S (2009) Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. water research 43(1):157–165

    Article  CAS  PubMed  Google Scholar 

  61. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJ, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiological research. 167(10):581–589

    Article  CAS  PubMed  Google Scholar 

  62. Regueiro L, Veiga P, Figueroa M, Lema JM, Carballa M (2014) Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Applied microbiology and biotechnology. 98(5):2015–2027

    Article  CAS  PubMed  Google Scholar 

  63. Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Applied microbiology and biotechnology. 97(11):5161–5174

    Article  CAS  PubMed  Google Scholar 

  64. Cirne D, Paloumet X, Björnsson L, Alves M, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renewable energy. 32(6):965–975

    Article  CAS  Google Scholar 

  65. Kim SH, Han SK, Shin HS (2004) Two-phase anaerobic treatment system for fat-containing wastewater. Journal of chemical technology and biotechnology. 79(1):63–71

    Article  CAS  Google Scholar 

  66. Lalman JA, Bagley DM (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Research. 35(12):2975–2983

    Article  CAS  PubMed  Google Scholar 

  67. Templer J, Lalman JA, Jing N, Ndegwa PM (2006) Influence of C18 long chain fatty acids on hydrogen metabolism. Biotechnology progress. 22(1):199–207

    Article  CAS  PubMed  Google Scholar 

  68. Sousa DZ, Pereira MA, Stams AJ, Alves MM, Smidt H (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Applied and environmental microbiology. 73(4):1054–1064

    Article  CAS  PubMed  Google Scholar 

  69. Pereira MA, Roest K, Stams AJ, Mota M, Alves M, Akkermans AD (2002) Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid. FEMS microbiology ecology. 41(2):95–103

    Article  CAS  PubMed  Google Scholar 

  70. Baserba MG, Angelidaki I, Karakashev D (2012) Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process. Bioresource technology. 106:74–81

    Article  CAS  PubMed  Google Scholar 

  71. Salvador AF, Cavaleiro AJ, Sousa DZ, Alves MM, Pereira MA (2013) Endurance of methanogenic archaea in anaerobic bioreactors treating oleate-based wastewater. Applied microbiology and biotechnology. 97(5):2211–2218

    Article  CAS  PubMed  Google Scholar 

  72. Kim J, Lee S, Lee C (2013) Comparative study of changes in reaction profile and microbial community structure in two anaerobic repeated-batch reactors started up with different seed sludges. Bioresource technology. 129:495–505

    Article  CAS  PubMed  Google Scholar 

  73. Pereira M, Pires O, Mota M, Alves M (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge. Biotechnology and bioengineering. 92(1):15–23

    Article  CAS  PubMed  Google Scholar 

  74. Alves MM, Pereira MA, Sousa DZ, Cavaleiro AJ, Picavet M, Smidt H, Stams AJ (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microbial biotechnology. 2(5):538–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cavaleiro A, Pereira M, Alves M (2008) Enhancement of methane production from long chain fatty acid based effluents. Bioresource technology. 99(10):4086–4095

    Article  CAS  PubMed  Google Scholar 

  76. Palatsi J, Illa J, Prenafeta-Boldú F, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling. Bioresource technology. 101(7):2243–2251

    Article  CAS  PubMed  Google Scholar 

  77. Hulshoff Pol L, de Castro Lopes S, Lettinga G, Lens P (2004) Anaerobic sludge granulation. Water Research. 38(6):1376–1389

    Article  CAS  PubMed  Google Scholar 

  78. Wu J, Zhou H-m, Li H-z, Zhang P-c, Jiang J (2009) Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor. Water research. 43(12):3029–3036

    Article  CAS  PubMed  Google Scholar 

  79. Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—I. Digester performance. Water Research. 35(7):1804–1816

    Article  CAS  PubMed  Google Scholar 

  80. Speece R, Boonyakitsombut S, Kim M, Azbar N, Ursillo P (2006) Overview of anaerobic treatment: thermophilic and propionate implications—Keynote Address Association of Environmental Engineering and Science Professors 78th Annual Water Environment Federation Technical Exposition and Conference, Washington, DC, Oct. 29Nov. 2, 2005. Water environment research. 78(5):460–473

    Article  CAS  PubMed  Google Scholar 

  81. McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: microbial population dynamics. Water Research. 35(7):1817–1827

    Article  CAS  PubMed  Google Scholar 

  82. McMahon KD, Zheng D, Stams AJ, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnology and bioengineering. 87(7):823–834

    Article  CAS  PubMed  Google Scholar 

  83. Hoffmann RA, Garcia ML, Veskivar M, Karim K, Al-Dahhan MH, Angenent LT (2008) Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol Bioeng. 100(1):38–48

    Article  CAS  PubMed  Google Scholar 

  84. Kundu K, Bergmann I, Klocke M, Sharma S, Sreekrishnan TR (2013) Influence of hydrodynamic shear on performance and microbial community structure of a hybrid anaerobic reactor. J Chem Technol Biotechnol 89(3):462–470

  85. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresource technology. 99(10):4044–4064

    Article  CAS  PubMed  Google Scholar 

  86. Westerholm M, Muller B, Arthurson V, Schnurer A (2011) Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ. 26(4):347–353

    Article  PubMed  Google Scholar 

  87. Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Research. 36(18):4648–4654

    Article  CAS  PubMed  Google Scholar 

  88. Calli B, Mertoglu B, Tas N, Inanc B, Yenigun O, Ozturk I (2003) Investigation of variations in microbial diversity in anaerobic reactors treating landfill leachate. Water Science & Technology. 48(4):105–112

    CAS  Google Scholar 

  89. Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry. 40(3):1285–1292

    Article  CAS  Google Scholar 

  90. Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels. Enzyme and Microbial Technology. 37(4):448–455

    Article  CAS  Google Scholar 

  91. Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia. Environmental technology. 26(1):85–91

    Article  CAS  PubMed  Google Scholar 

  92. Niu Q, Qiao W, Qiang H, Li Y-Y (2013) Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia. Bioresource technology. 146:223–233

    Article  CAS  PubMed  Google Scholar 

  93. Fotidis IA, Karakashev D, Kotsopoulos TA, Martzopoulos GG, Angelidaki I (2013) Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS microbiology ecology. 83(1):38–48

    Article  CAS  PubMed  Google Scholar 

  94. Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of anaerobic digestion of sludge. Critical Reviews in Environmental Science and Technology. 39(12):1003–1051

    Article  CAS  Google Scholar 

  95. Yu L, Wensel PC, Ma J, Chen S (2013) Mathematical modeling in anaerobic digestion (AD). J Bioremed Biodeg S. 4:2

    Google Scholar 

  96. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no. 1 (ADM 1). Water Science & Technology. 45(10):65–73

    CAS  Google Scholar 

  97. Ramirez I, Steyer J (2008) Modeling microbial diversity in anaerobic digestion. Water Science & Technology. 57(2)

  98. Rajinikanth R, Ramirez I, Steyer JP, Mehrotra I, Kumar P, Escudie R, Torrijos M (2008) Experimental and modeling investigations of a hybrid upflow anaerobic sludge-filter bed (UASFB) reactor. Water Sci Technol. 58(1):109–117

    Article  CAS  PubMed  Google Scholar 

  99. Yuan Z, Blackall LL (2002) Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems. Water Research. 36(2):482–490

    Article  CAS  PubMed  Google Scholar 

  100. Ramirez I, Volcke EI, Rajinikanth R, Steyer J-P (2009) Modeling microbial diversity in anaerobic digestion through an extended ADM1 model. Water research. 43(11):2787–2800

    Article  CAS  PubMed  Google Scholar 

  101. Hinken L, Huber M, Weichgrebe D, Rosenwinkel K-H (2014) Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests. Water research. 64:82–93

    Article  CAS  PubMed  Google Scholar 

  102. Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Current opinion in biotechnology. 33:103–111

    Article  CAS  PubMed  Google Scholar 

  103. Rasit N, Idris A, Harun R, Ghani WAWAK (2015) Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview. Renewable and Sustainable Energy Reviews. 45:351–358

    Article  CAS  Google Scholar 

  104. Sasaki K, Morita M, Hirano S-i, Ohmura N, Igarashi Y (2011) Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied microbiology and biotechnology. 90(4):1555–1561

    Article  CAS  PubMed  Google Scholar 

  105. Westerholm M, Levén L, Schnürer A (2012) Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Applied and environmental microbiology. 78(21):7619–7625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fotidis IA, Karakashev D, Angelidaki I (2013) Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresource technology. 146:57–62

    Article  CAS  PubMed  Google Scholar 

  107. Lee C, Kim J, Shin SG, Hwang S (2008) Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS microbiology ecology. 65(3):544–554

    Article  CAS  PubMed  Google Scholar 

  108. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental microbiology. 10(6):1571–1581

    Article  CAS  PubMed  Google Scholar 

  109. LaPara TM, Nakatsu CH, Pantea LM, Alleman JE (2002) Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Research. 36(3):638–646

    Article  CAS  PubMed  Google Scholar 

  110. Goberna M, Insam H, Franke-Whittle I (2009) Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Applied and environmental microbiology. 75(8):2566–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology. 72(2):1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Applied and Environmental Microbiology. 65(8):3697–3704

    PubMed  PubMed Central  Google Scholar 

  113. Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environmental Microbiology. 2(1):69–78

    Article  CAS  PubMed  Google Scholar 

  114. Delbès C, Moletta R, Godon JJ (2001) Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS microbiology ecology. 35(1):19–26

    Article  PubMed  Google Scholar 

  115. Ryan P, Forbes C, Colleran E (2008) Investigation of the diversity of homoacetogenic bacteria in mesophilic and thermophilic anaerobic sludges using the formyltetrahydrofolate synthetase gene. Water Science & Technology. 57(5)

  116. Gilbride K, Lee D-Y, Beaudette L (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. Journal of microbiological methods. 66(1):1–20

    Article  CAS  PubMed  Google Scholar 

  117. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water research. 41(7):1554–1568

    Article  CAS  PubMed  Google Scholar 

  118. Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renewable and Sustainable Energy Reviews. 15(9):4295–4301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K. Kundu wishes to acknowledge All India Council for Technical Education (AICTE), India, for providing financial assistantship during her PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, K., Sharma, S. & Sreekrishnan, T.R. Influence of Process Parameters on Anaerobic Digestion Microbiome in Bioenergy Production: Towards an Improved Understanding. Bioenerg. Res. 10, 288–303 (2017). https://doi.org/10.1007/s12155-016-9789-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9789-0

Keywords

Navigation