Skip to main content

Advertisement

Log in

Key Factors Affecting the Recalcitrance and Conversion Process of Biomass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is one of the most abundant raw materials in the world, and it is mainly composed of carbohydrate polymers (cellulose and hemicellulose) and lignin. Its applications vary from the production of pulp and paper, to the most recent plant-based bioethanol production, which has challenge due to low hydrolysis conversion rates by the inherit recalcitrance of biomass. The biomass is naturally resistant due the high complexity in the component organization and interaction in the cell wall. The application of pretreatment technologies is one of the most used strategies to overcome biomass recalcitrance. These techniques often require a catalyst to modify the lignocellulosic structure which can be acids, alkaline compounds, ionic solutions, organic solvents, and even pressurized steam among others. The type of catalyst dictates the name of the pretreatment involved. This work presents an overview of these strategies, along with some recent contributions from the scientific community to improve biomass conversion technologies. The discussion is focused on the key factors related to the recalcitrance and conversion process, as well as the composition and physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    Article  CAS  Google Scholar 

  2. Kamm B, & Kamm M. (2007). Biorefineries–multi product processes. In White Biotechnology (pp. 175-204). Springer Berlin Heidelberg

  3. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  CAS  Google Scholar 

  4. Brienzo M, Abud Y, Ferreira S, Corrales RC, Ferreira-Leitão VS, de Souza W, & Sant’Anna C (2016). Characterization of anatomy, lignin distribution, and response to pretreatments of sugarcane culm node and internode. Ind Crop Prod, 84, 305–313

  5. Chang VS, & Holtzapple MT (2000). Fundamental factors affecting biomass enzymatic reactivity. In Twenty-first symposium on biotechnology for fuels and chemicals (pp. 5-37). Humana Press, Totowa

  6. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    CAS  Google Scholar 

  7. Brienzo M, Fikizolo S, Benjamin Y, Tyhoda L, Görgens J (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104:271–280

    Article  CAS  Google Scholar 

  8. Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74(1):78–88

    Article  CAS  Google Scholar 

  9. Rodrıguez-Chong A, Ramı́rez JA, Garrote G, Vázquez M (2004) Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J Food Eng 61(2):143–152

    Article  Google Scholar 

  10. Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38(1):105–109

    Article  CAS  Google Scholar 

  11. Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100(3):1238–1245

    Article  CAS  PubMed  Google Scholar 

  12. Martín C, Galbe M, Nilvebrant NO, & Jönsson LJ (2002). Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. In Biotechnology for Fuels and Chemicals (pp. 699-716). Humana Press, Totowa, NJ

  13. Sendelius J (2005). Steam pretreatment optimisation for sugarcane bagasse in bioethanol production. Master of Science Thesis. Department of Chemical Engineering, Lund University, Sweden

  14. Li X, Kondo R, & Sakai K (2002). In vivo and in vitro biobleaching of unbleached hardwood kraft pulp by a marine fungus, Phlebia sp. MG-60. In Progress in Biotechnology (Vol. 21, pp. 185-191). Elsevier

  15. Camassola M, Dillon AJ (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29(2–3):642–647

    Article  CAS  Google Scholar 

  16. Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzym Microb Technol 40(3):426–432

    Article  CAS  Google Scholar 

  17. Pasquini D, Pimenta MT, Ferreira LH, Curvelo AA (2005) Sugar cane bagasse pulping using supercritical CO2 associated with co-solvent 1-butanol/water. J Supercrit Fluids 34(2):125–131

    Article  CAS  Google Scholar 

  18. Pereira AA, Martins GF, Antunes PA, Conrrado R, Pasquini D, Job AE et al (2007) Lignin from sugar cane bagasse: extraction, fabrication of nanostructured films, and application. Langmuir 23(12):6652–6659

    Article  CAS  PubMed  Google Scholar 

  19. Tu Q, Fu S, Zhan H, Chai X, Lucia LA (2008) Kinetic modeling of formic acid pulping of bagasse. J Agric Food Chem 56(9):3097–3101

    Article  CAS  PubMed  Google Scholar 

  20. Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81(1):33–44

    Article  CAS  PubMed  Google Scholar 

  21. Kurakake M, Kisaka W, Ouchi K, Komaki T (2001) Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Appl Biochem Biotechnol 90(3):251–259

    Article  CAS  PubMed  Google Scholar 

  22. Li BZ, Balan V, Yuan YJ, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101(4):1285–1292

    Article  CAS  PubMed  Google Scholar 

  23. Shoda Y, Nakamoto A, Goto M, Tokuhara W, Noritake Y, Katahira S et al (2012) Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. Bioresour Technol 103(1):446–452

    Article  CAS  PubMed  Google Scholar 

  24. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW & Foust TD (20/07). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807

  25. K Sheth (2017). Top Sugarcane Producing Countries. http://www.worldatlas.com/articles/top-sugarcane-producing-countries.html. Accessed 20 December 2017;

  26. Hussain, A., Khan, Z. I., Ghafoor, M. Y., & Ashraf, M. (2004). Review Sugarcane, Sugar Metabolism and Some Abiotic Stresses

  27. Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crop Res 92(2–3):169–183

    Article  Google Scholar 

  28. Sanjuan R, Anzaldo J, Vargas J, Turrado J, Patt R (2001) Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz als Roh-und Werkstoff 59(6):447–450

    Article  CAS  Google Scholar 

  29. Miller JD, Gilbert RA, & Odero DC (2009). Sugarcane botany: a brief view. University of Flórida, IFAS Extension

  30. Sun RC, Fang JM, Tomkinson J, Geng ZC, Liu JC (2001) Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydr Polym 44(1):29–39

    Article  CAS  Google Scholar 

  31. Brienzo M, Ferreira S, Vicentim MP, de Souza W, & Sant’Anna C (2014). Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane culm. BioEnergy Res, 7(4), 1454–1465

  32. Costa TH, Masarin F, Bonifácio TO, Milagres AM, Ferraz A (2013) The enzymatic recalcitrance of internodes of sugar cane hybrids with contrasting lignin contents. Ind Crop Prod 51:202–211

    Article  CAS  Google Scholar 

  33. Cerqueira DA, Rodrigues Filho G, da Silva Meireles C (2007) Optimization of sugarcane bagasse cellulose acetylation. Carbohydr Polym 69(3):579–582

    Article  CAS  Google Scholar 

  34. Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym 57(1):67–72

    Article  CAS  Google Scholar 

  35. Harris DR, & Hillman GC (Eds.). (2014). Foraging and farming: the evolution of plant exploitation (Vol. 31). Routledge

  36. S Ullmann. Milho. (2001) http://www.ufrgs.br/afeira/materias-primas/cereais/millho. Accessed 20 December 2017

  37. U. S. Department of Agriculture. USDA. (2017). https://www.usda.gov/. Accessed 20 December 2017

  38. Bechoux N, Bernier G, Lejeune P (2000) Environmental effects on the early stages of tassel morphogenesis in maize (Zea mays L.). Plant, Cell Environ 23:91–98

    Article  Google Scholar 

  39. Sridhar Viamajala; Michael J. Selig; Todd B. Vinant; Melvin P. Tucker; Michael E. Himmel; James D. McMillan; Stephen R. Decker Appl Biochem Biotechnol (2006) 130: 509

  40. Hochholdinger, F. (2009). The maize root system: morphology, anatomy, and genetics. In Handbook of maize: its biology (pp. 145-160). Springer, New York, NY

  41. Sylvester, A. W., & Smith, L. G. (2009). Cell biology of maize leaf development. In Handbook of Maize: its biology (pp. 179-203). Springer, New York, NY

  42. Thompson JL, Tyner WE (2014) Corn stover for bioenergy production: cost estimates and farmer supply response. Biomass Bioenergy 62:166–173

    Article  Google Scholar 

  43. Foley KM (1978). Chemical properties, physical properties, and uses of the Anderson’corncob products. The Andersons, Cob Division

  44. Clark TF, & Lathrop EC (1953). Corncobs: their composition, availability, agricultural and industrial Uses. United States Department of Agriculture, Agricultural Research Administration, Bureau of Agricultural and Industrial Chemistry, Northern Regional Research Laboratory

  45. Sokhansanj S, Turhollow A, Cushman J, Cundiff J (2002) Engineering aspects of collecting corn stover for bioenergy. Biomass Bioenergy 23(5):347–355

    Article  Google Scholar 

  46. Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96(2):219–231

    Article  CAS  PubMed  Google Scholar 

  47. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2(1):58–73

    Article  CAS  Google Scholar 

  48. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  PubMed  Google Scholar 

  49. Potters G, Van Goethem D, & Schutte F (2010). Promising biofuel resources: lignocellulose and algae. Nat Educ, 3(9), 14

  50. Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod Biorefin 10(5):634–647

    Article  CAS  Google Scholar 

  51. Sant’Anna C, De Souza W, & Brienzo M (2014). The influence of the heterogeneity, physicochemical and structural properties on the recalcitrance and conversion of sugarcane bagasse. Sugarcane: Production, Consumption and Agricultural Management Systems, 1–34

  52. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J Agric Food Chem 58(3):1768–1776

    Article  CAS  Google Scholar 

  53. Yao S, Nie S, Zhu H, Wang S, Song X, Qin C (2017) Extraction of hemicellulose by hot water to reduce adsorbable organic halogen formation in chlorine dioxide bleaching of bagasse pulp. Ind Crop Prod 96:178–185

    Article  CAS  Google Scholar 

  54. Busse-Wicher M, Grantham NJ, Lyczakowski JJ, Nikolovski N, Dupree P (2016) Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochem Soc Trans 44(1):74–78

    Article  CAS  PubMed  Google Scholar 

  55. Chen H (2014). Chemical composition and structure of natural lignocellulose. In Biotechnology of lignocellulose (pp. 25-71). Springer, Dordrecht

  56. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46(2):199–204

    Article  CAS  Google Scholar 

  57. Sun S, Cai Y, Liu H (2001) Biomass allocation of Scirpus mariqueter along an elevational gradient in a salt marsh of the Yangtse River estuary. Acta Bot Sin 43(2):178–185

    CAS  Google Scholar 

  58. Peng, J., Chen, P., Lou, H., & Zheng, X. (2009). Catalytic upgrading of bio-oil by HZSM-5 in

  59. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions, vol 613. Walter Gruyter, pp 1960–1982

  60. Brienzo M, Carvalho W, Milagres AM (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 162(4):1195–1205

    Article  CAS  PubMed  Google Scholar 

  61. Zeng J, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61(46):10848–10857

    Article  CAS  PubMed  Google Scholar 

  62. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  CAS  Google Scholar 

  63. York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol 11(3):258–265

    Article  CAS  PubMed  Google Scholar 

  64. Chundawat, S. P., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals

  65. Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Darvill AG (2012) 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci 109(35):14253–14258

    Article  PubMed  Google Scholar 

  66. Moghaddam L, Zhang Z, Wellard RM, Bartley JP, O'Hara IM, Doherty WO (2014) Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass Bioenergy 70:498–512

    Article  CAS  Google Scholar 

  67. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  68. Rocha GJM, Gonçalves AR, Nakanishi SC, Nascimento VM, Silva VFN (2015) Pilot scale steam explosion and diluted sulfuric acid pretreatments: comparative study aiming the sugarcane bagasse saccharification. Ind Crop Prod 74:810–816

    Article  CAS  Google Scholar 

  69. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101

    Article  CAS  Google Scholar 

  70. Holladay JE, White JF, Bozell JJ, & Johnson D (2007). Top value-added chemicals from biomass-volume II—results of screening for potential candidates from biorefinery lignin (no. PNNL-16983). Pacific Northwest National Laboratory (PNNL), Richland, WA (US)

  71. Sjostrom E (2013). Wood chemistry: fundamentals and applications. Elsevier

  72. Grisebach H (2016). Lignins I 5. Secondary Plant Products: a Comprehensive Treatise, 7, 457

  73. Fang R, Cheng X, Xu X (2010) Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour Technol 101(19):7323–7329

    Article  CAS  PubMed  Google Scholar 

  74. Chung YL, Olsson JV, Li RJ, Frank CW, Waymouth RM, Billington SL, Sattely ES (2013) A renewable lignin–lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1(10):1231–1238

    Article  CAS  Google Scholar 

  75. Hu S, Zhang S, Pan N, Hsieh YL (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112

    Article  CAS  Google Scholar 

  76. Labeeuw L, Martone PT, Boucher Y, Case RJ (2015) Ancient origin of the biosynthesis of lignin precursors. Biol Direct 10(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boitte BC, Rivard M, Majira A, Beauhaire J, Allais F, Martens T et al (2015) Comparative electrochemical study on monolignols and dimers relevant for the comprehension of the lignification process. Phytochem Lett 13:280–285

    Article  CAS  Google Scholar 

  78. Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI et al (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10(5):609–620

    Article  CAS  PubMed  Google Scholar 

  79. Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45

    Article  CAS  PubMed  Google Scholar 

  80. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  CAS  PubMed  Google Scholar 

  81. Verma SR, Dwivedi UN (2014) Lignin genetic engineering for improvement of wood quality: applications in paper and textile industries, fodder and bioenergy production. S Afr J Bot 91:107–125

    Article  CAS  Google Scholar 

  82. Simmons BA, Loque D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13(3):312–319

    Article  CAS  Google Scholar 

  83. Oraby HF, Ramadan MF (2015) Impact of suppressing the caffeic acid O-methyltransferase (COMT) gene on lignin, fiber, and seed oil composition in Brassica napus transgenic plants. Eur Food Res Technol 240(5):931–938

    Article  CAS  Google Scholar 

  84. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  PubMed  Google Scholar 

  86. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196(4):978–1000

    Article  CAS  PubMed  Google Scholar 

  87. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression offerulate 5-hydroxylase in hybrid Poplar. Plant Physiology, 150, 621–635

  88. Grabber JH, Hatfield RD, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9(9):2510–2516

    Article  CAS  PubMed  Google Scholar 

  89. Brienzo M, Tyhoda L, Benjamin Y, Görgens J (2015) Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. New Biotechnol 32(2):253–262

    Article  CAS  Google Scholar 

  90. Siqueira G, Arantes V, Saddler JN, Ferraz A, Milagres AM (2017) Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol Biofuels 10(1):176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548

    Article  CAS  PubMed  Google Scholar 

  92. Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108(12):2823–2834

    Article  CAS  PubMed  Google Scholar 

  93. Park JW, Takahata Y, Kajiuchi T, Akehata T (1992) Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39(1):117–120

    Article  CAS  PubMed  Google Scholar 

  94. Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzym Microb Technol 40(4):754–762

    Article  CAS  Google Scholar 

  95. Vaidya AA, Newman RH, Campion SH, Suckling ID (2014) Strength of adsorption of polyethylene glycol on pretreated Pinus radiata wood and consequences for enzymatic saccharification. Biomass Bioenergy 70:339–346

    Article  CAS  Google Scholar 

  96. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 108(9):3803–3808

    Article  PubMed  Google Scholar 

  97. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci 108(15):6300–6305

    Article  PubMed  Google Scholar 

  98. Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Singh S (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol 117:352–359

    Article  CAS  PubMed  Google Scholar 

  99. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  CAS  PubMed  Google Scholar 

  100. Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224

    Article  CAS  PubMed  Google Scholar 

  101. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  102. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339

    Article  CAS  PubMed  Google Scholar 

  103. Hansen MA, Kristensen JB, Felby C, Jørgensen H (2011) Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.)–the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour Technol 102(3):2804–2811

    Article  CAS  PubMed  Google Scholar 

  104. Wallace J, Brienzo M, García-Aparicio MP, Görgens JF (2016) Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse. New Biotechnol 33(3):361–371

    Article  CAS  Google Scholar 

  105. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  PubMed  Google Scholar 

  106. Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4(4):1306–1310

    Article  CAS  Google Scholar 

  107. Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110(3):737–753

    Article  CAS  PubMed  Google Scholar 

  108. Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  109. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  110. Oliveira FM, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second-generation ethanol and value-added products. Bioresour Technol 130:168–173

    Article  CAS  PubMed  Google Scholar 

  111. Shevchenko SM, Beatson RP, & Saddler JN (1999). The nature of lignin from steam explosion/enzymatic hydrolysis of softwood. In Twentieth Symposium on Biotechnology for Fuels and Chemicals (pp. 867-876). Humana Press, Totowa

  112. Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100(9):2556–2561

    Article  CAS  PubMed  Google Scholar 

  113. Rocha GDM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35(1):274–279

    Article  CAS  Google Scholar 

  114. Nasirpour N, Mousavi SM, Shojaosadati SA (2014) A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour Technol 169:33–37

    Article  CAS  PubMed  Google Scholar 

  115. Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476

    Article  CAS  PubMed  Google Scholar 

  116. Kukrety A, Singh RK, Singh P, & Ray SS (2017). Comprehension on the synthesis of carboxymethylcellulose (CMC) utilizing various cellulose rich waste biomass resources. Waste Biomass Valorization, 1–9

  117. French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24(11):4605–4609

    Article  CAS  Google Scholar 

  118. Bidhendi AJ, Geitmann A (2015) Relating the mechanics of the primary plant cell wall to morphogenesis. J Exp Bot 67(2):449–461

    Article  CAS  PubMed  Google Scholar 

  119. Davison BH, Parks J, Davis MF, & Donohoe BS (2013). Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 23–38

  120. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  121. Nakamura A, Watanabe H, Ishida T, Uchihashi T, Wada M, Ando T et al (2014) Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J Am Chem Soc 136(12):4584–4592

    Article  CAS  PubMed  Google Scholar 

  122. Yuan X, Duan Y, He L, Singh S, Simmons B, Cheng G (2017) Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering. Bioresour Technol 232:113–118

    Article  CAS  PubMed  Google Scholar 

  123. Vena PF, García-Aparicio MP, Brienzo M, Görgens JF, Rypstra T (2013) Effect of alkaline hemicellulose extraction on kraft pulp fibers from Eucalyptus grandis. J Wood Chem Technol 33(3):157–173

    Article  CAS  Google Scholar 

  124. Crowe JD, Zarger RA, Hodge DB (2017) Relating nanoscale accessibility within plant cell walls to improved enzyme hydrolysis yields in corn stover subjected to diverse pretreatments. J Agric Food Chem 65(39):8652–8662

    Article  CAS  PubMed  Google Scholar 

  125. Chandra RP, Esteghlalian AR, & Saddler JN (2008). Assessing substrate accessibility to enzymatic hydrolysis by cellulases. Characterization of lignocellulosic materials, 60–80

  126. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  PubMed  Google Scholar 

  128. Huang R, Su R, Qi W, He Z (2010) Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Prog 26(2):384–392

    CAS  PubMed  Google Scholar 

  129. Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389

    Article  CAS  PubMed  Google Scholar 

  130. Harmoko C, Sucipto KI, Retnoningtyas ES, Hartono SB (2016) Vinyl functionalized cubic mesoporous silica nanoparticles as supporting material to enhance cellulase enzyme stability. ARPN J Eng Appl Sci 11:2981–2992

    CAS  Google Scholar 

  131. Chandra RP, Bura R, Mabee WE, Berlin DA, Pan X, & Saddler JN (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?. In Biofuels (pp. 67-93). Springer Berlin Heidelberg

  132. Luo X, Zhu JY (2011) Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzym Microb Technol 48(1):92–99

    Article  CAS  Google Scholar 

  133. Goufo ED, & Mugisha S (2018). Complex harmonic poles in the evolution of macromolecules depolymerization. J Comput Anal Appl, 1490

  134. Yücel Y, Göycıncık S (2015) Optimization and modelling of process conditions using response surface methodology (RSM) for enzymatic saccharification of spent tea waste (STW). Waste and Biomass Valorization 6(6):1077–1084

    Article  CAS  Google Scholar 

  135. Zhao X, Li S, Wu R, & Liu D (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining

  136. Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356

    Article  CAS  PubMed  Google Scholar 

  137. Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res 6(2):405–415

    Article  CAS  Google Scholar 

  138. Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857

    Article  CAS  PubMed  Google Scholar 

  139. Chen JH, Wang K, Xu F, Sun RC (2015) Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose 22(1):63–72

    Article  CAS  Google Scholar 

  140. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzym Microb Technol 48(1):54–60

    Article  CAS  Google Scholar 

  141. Ek R, Alderborn G, & Nyström C (1994). Particle analysis of microcrystalline cellulose: differentiation between individual particles and their agglomerates. Int J Pharm, 111(1), 43–50

  142. Simons FL (1950) A stain for use in the microscopy of beaten fibers. Tappi 33(7):312–314

    CAS  Google Scholar 

  143. Yu X, Minor JL, Atalla RH (1995) Mechanism of action of Simons' stain. TAPPI J 78(6):175–180

    CAS  Google Scholar 

  144. Berodier E, Bizzozero J, & Muller AC (2016). Mercury intrusion porosimetry. A Practical Guide to Microstructural Analysis of Cementitious Materials, 419

  145. Orsolini P, Michen B, Huch A, Tingaut P, Caseri WR, Zimmermann T (2015) Characterization of pores in dense nanopapers and nanofibrillated cellulose membranes: a critical assessment of established methods. ACS Appl Mater Interfaces 7(46):25884–25897

    Article  CAS  PubMed  Google Scholar 

  146. Groen JC, Peffer LA, Pérez-Ramı́rez J (2003) Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60(1–3):1–17

    Article  CAS  Google Scholar 

  147. Ciesielski PN, Matthews JF, Tucker MP, Beckham GT, Crowley MF, Himmel ME, Donohoe BS (2013) 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS Nano 7(9):8011–8019

    Article  CAS  PubMed  Google Scholar 

  148. Pu Y, Meng X, Yoo CG, Li M, & Ragauskas AJ (2016). Analytical methods for biomass characterization during pretreatment and bioconversion. Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact New York: Nova Science Publishers, 37–78

  149. McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15(1):43–51

    Article  CAS  PubMed  Google Scholar 

  150. Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185(1):67–75

    Article  Google Scholar 

  151. Reishofer D, & Spirk S (2015). Deuterium and cellulose: a comprehensive review. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials (pp. 93-114). Springer, Cham

  152. Lindh EL, Salmén L (2017) Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 24(1):21–33

    Article  CAS  Google Scholar 

  153. Licari A, Monlau F, Solhy A, Buche P, Barakat A (2016) Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: glucose yield and energy efficiency. Energy 102:335–342

    Article  CAS  Google Scholar 

  154. da Silva ASA, Teixeira RSS, de Oliveira Moutta R, Ferreira-Leitão VS, de Barros RDRO, Ferrara MA, & da Silva Bon EP (2013). Sugarcane and woody biomass pretreatments for ethanol production. In Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. InTech

  155. Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162(7):1872–1880

    Article  CAS  PubMed  Google Scholar 

  156. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711

    Article  CAS  PubMed  Google Scholar 

  157. Herrera A, Téllez-Luis SJ, Ramırez JA, Vázquez M (2003) Production of xylose from sorghum straw using hydrochloric acid. J Cereal Sci 37(3):267–274

    Article  CAS  Google Scholar 

  158. Trajano HL, & Wyman CE (2013). Fundamentals of biomass pretreatment at low pH. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 103–128

  159. Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA (2013) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Technol 3(4):927–931

    Article  CAS  Google Scholar 

  160. Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Chemistry 42(3):502–507

    Article  CAS  Google Scholar 

  161. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962

    Article  CAS  PubMed  Google Scholar 

  162. Meng X, Pu Y, Yoo CG, Li M, Bali G, Park DY et al (2017) An in-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem 10(1):139–150

    Article  CAS  PubMed  Google Scholar 

  163. Aguilar R, Ramırez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55(4):309–318

    Article  Google Scholar 

  164. Öhgren K, Galbe M, Zacchi G (2005) Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Appl Biochem Biotechnol 124(1–3):1055–1067

    Article  Google Scholar 

  165. Excoffier G, Toussaint B, Vignon MR (1991) Saccharification of steam-exploded poplar wood. Biotechnol Bioeng 38(11):1308–1317

    Article  CAS  PubMed  Google Scholar 

  166. Du B, Sharma LN, Becker C, Chen SF, Mowery RA, van Walsum GP, & Chambliss CK (2010). Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng, 107(3), 430–440

  167. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  CAS  PubMed  Google Scholar 

  168. Soto ML, Dominguez H, Nunez MJ, Lema JM (1994) Enzymatic saccharification of alkali-treated sunflower hulls. Bioresour Technol 49(1):53–59

    Article  CAS  Google Scholar 

  169. Monte JR, Brienzo M, Milagres AMF (2011) Utilization of pineapple stem uice to enhance enzyme-hydrolytic efficiency for sugarcane bagasse after an optimized pre-treatment with alkaline peroxide. Appl Energy 88(1):403–408

    Article  CAS  Google Scholar 

  170. Goshadrou A, Lefsrud M (2017) Synergistic surfactant-assisted [EMIM] OAc pretreatment of lignocellulosic waste for enhanced cellulose accessibility to cellulase. Carbohydr Polym 166:104–113

    Article  CAS  PubMed  Google Scholar 

  171. Walker LP, Wilson DB (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36(1):3–14

    Article  CAS  Google Scholar 

  172. Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98(1–9):641–654

    Article  PubMed  Google Scholar 

  173. Mooney CA, Mansfield SD, Touhy MG, Saddler JN (1998) The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour Technol 64(2):113–119

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the Brazilian Council for Research and Development (CNPq, process 401900/2016-9; process 401000/2016-9) and the National Institute of Metrology, Quality, and Technology (Prometro grant number 550105/2012-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Brienzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melati, R.B., Shimizu, F.L., Oliveira, G. et al. Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. Bioenerg. Res. 12, 1–20 (2019). https://doi.org/10.1007/s12155-018-9941-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9941-0

Keywords

Navigation