Skip to main content
Log in

Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this study, a simple and rapid analytical method development for ascorbic acid (AA) determination in food samples by using differential pulse voltammetry (DPV) method on ZnO/CNTs nanocomposite ionic liquid modified carbon paste electrode. For this, several parameters, such as ZnO/CNTs nanocomposite, ionic liquid ratio, and pH, have been studied. The cyclic voltammogram showed an irreversible oxidation peak at 0.61 V (vs. Ag/AgClsat), which corresponded to the oxidation of AA. Compared to common carbon paste electrode, the electrochemical response was greatly improved. Under the optimized conditions, the oxidation peak current of AA showed linear dynamic range 0.1–450 μmol l−1 with a detection limit of 0.07 μmol l−1, using the DPV method. The proposed sensor was successfully applied to the determination of AA in fresh vegetable juice, fruit juices and food supplement samples without previous preparation and was compared with a published electrochemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agater IB, Jewsbury RA (1997) Direct chemiluminescence determination of ascorbic acid using flow injection analysis. Anal Chim Acta 356:289–294

    Article  CAS  Google Scholar 

  • Alwarthan AA (1993) Determination of ascorbic acid by flow injection with chemiluminescence detection. Analyst 118:639–642

    Article  CAS  Google Scholar 

  • Ansari M, Kazemi S, Khalilzadeh MA, Karimi-Maleh H, Pasha Zanousi MB (2013) Sensitive and stable voltammetric measurements of norepinephrine at ionic liquid–carbon nanotubes paste electrodes. Int J Electrochem Sci 8:1938–1948

    CAS  Google Scholar 

  • Asnaashariisfahani M, Karimi-maleh H, Ahmar H, Ensafi AA, Fakhari AR, Khalilzadeh MA, Karimi F (2012) Novel 8,9-dihydroxy-7-methyl-12H-benzothiazolo[2,3-b]quinazolin-12-one multiwalled carbon nanotubes paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Anal Methods 4:3275–3282

    Article  CAS  Google Scholar 

  • Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed 45:2533–2537

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Beitollah H, Goodarzian M, Khalilzadeh MA, Karimi-Maleh H, Hassanzadeh M, Tajbakhsh M (2012) Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J Mol Liq 173:137–143

    Article  CAS  Google Scholar 

  • Beitollahi H, Mazloum Ardakani M, Naeimi H, Ganjipour B (2009) Electrochemical characterization of 2,2′-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid. J Solid State Electrochem 13:353–363

    Article  CAS  Google Scholar 

  • Besada A (1987) A facile and sensitive spectrophotometric determination of ascorbic acid. Talanta 34:731–732

    Article  CAS  Google Scholar 

  • Chernyshov DV, Shvedene NV, Antipova ER, Pletnev V (2008) Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines. Anal Chim Acta 621:178–184

    Article  CAS  Google Scholar 

  • Conley JM, Symes SJ, Kindelberger SA, Richards SM (2008) Rapid liquid chromatography–tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A 1185:206–215

    Article  CAS  Google Scholar 

  • Dennison DB, Brawley TG, Hunter GLK (1981) Rapid high-performance liquid chromatographic determination of ascorbic acid and combined ascorbic acid–dehydroascorbic acid in beverages. J Agric Food Chem 29:927–929

    Article  CAS  Google Scholar 

  • Ensafi AA, Karimi-Maleh H (2010) Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocene dicarboxylic acid as a mediator. J Electroanal Chem 640:75–83

    Article  CAS  Google Scholar 

  • Ensafi AA, Karimi-Maleh H, Mallakpour S (2012) Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide-modified carbon nanotubes paste electrode. Electroanalysis 24:666–675

    Article  CAS  Google Scholar 

  • Ensafi AA, Karimi-Maleh H, Mallakpour S (2013) new strategy for the selective determination of glutathione in 2 the presence of nicotinamide adenine dinucleotide (NADH) using 3 a novel modified carbon nanotube paste electrode. Coll Surf B 104:186–193

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2001) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71:1110–1117

    Article  Google Scholar 

  • Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode. Electroanalysis 17:2217–2223

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007a) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72:976–983

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Bachheti N (2007b) Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping. Anal Chim Acta 597:82–89

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Chatterjee S (2008a) Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode. Talanta 76:662–668

    Article  CAS  Google Scholar 

  • Goyal R, Gupta VK, Chatterjee S (2008b) Electrochemical oxidation of 2′,3′-dideoxyadenosine at pyrolytic graphite electrode. Electrochim Acta 53:5354–5360

    Article  CAS  Google Scholar 

  • Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008c) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sens Actuators B 134:816–821

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008d) Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis 20:757–764

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Chatterjee S (2009a) A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping. Biosens Bioelec 24:3562–3568

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Chatterjee S (2009b) Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens Bioelec 24:1649–1654

    Article  CAS  Google Scholar 

  • Grudpan K, Kamfoo K, Jakmunee J (1999) Flow injection spectrophotometric or conductometric determination of ascorbic acid in a vitamin C tablet using permanganate or ammonia. Talanta 49:1023–1026

    Article  CAS  Google Scholar 

  • Guclu K, Sozgen K, Tutem E, Ozyurek M, Apak R (2005) Spectrophotometric determination of ascorbic acid using copper(II)–neocuproine reagent in beverages and pharmaceuticals. Talanta 65:1226–1232

    Article  Google Scholar 

  • Gupta VK, Pangannaya NB (2000) Carbonnanotubes: bibliometric analysis of patents. World Patent Inf 22:185–189

    Article  CAS  Google Scholar 

  • Gupta VK, Jain S, Khurana U (1997) A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II). Electroanalysis 9:478–480

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor. Electroanalysis 11:573–576

    Article  CAS  Google Scholar 

  • Gupta VK, Prasad R, Kumar P, Mangla R (2000) New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Anal Chim Acta 420:19–27

    Article  CAS  Google Scholar 

  • Gupta VK, Chandra S, Mangla R (2002) Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim Acta 47:1579–1586

    Article  CAS  Google Scholar 

  • Gupta VK, Prasad R, Kumar A (2003) Preparation of ethambutol–copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta 60:149–160

    Article  CAS  Google Scholar 

  • Gupta VK, Chandra S, Lang H (2005) A highly selective mercury electrode based on a diamine donor ligand. Talanta 66:575–580

    Google Scholar 

  • Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006a) Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sens Actuators B 113:182–186

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006b) Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens Actuators B 117:99–106

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Kumar P (2006c) PVC-based membranes of N, N′-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor. Sens Actuators B120:259–265

    Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2006d) A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N, N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal Chim Acta 575:198–204

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Mehtab S, Gupta B (2006e) A cobalt(II)-selective PVC membrane based on a Schiff base complex of N, N′-bis(salicylidene)-3,4-diaminotoluene. Anal Chim Acta 566:5–10

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007a) Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583:340–348

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Al Khayat M, Gupta B (2007b) Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal Chim Acta 590:81–90

    Article  CAS  Google Scholar 

  • Gupta VK, Al Khayat M, Singh AK, Pal MK (2009a) Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chem Acta 634:36–43

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009b) Novel PVC membrane based alizarin sensor and its application; determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009c) Comparative studies of neodymium (III)-selective PVC membrane sensors. Anal Chim Acta 647:66–71

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011a) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011b) Synthesis and characterization of alumina-coated carbonnanotubes and their application for lead removal. J Hazar Mater 185:17–23

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011c) Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem 408:179–196

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Khurana U (1997) Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst 122:583–586

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Raisoni JR (2006) A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim Acta 51:2547–2553

    Article  CAS  Google Scholar 

  • Jain R, Gupta VK, Jadon N, Radhapyari K (2010a) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407:79–88

    Article  CAS  Google Scholar 

  • Jain R, Gupta VK, Jadon N, Radhapyari K (2010b) Adsorptive stripping voltammetric determination of pyridostigmine bromide in bulk, pharmaceutical formulations and biological fluid. J Electroanal Chem 648:20–27

    Article  CAS  Google Scholar 

  • Lin Y, Hu Y, Long Y, Di J (2011) Determination of ascorbic acid using an electrode modified with cysteine self-assemble gold-platinum nanoparticles. Microchim Acta 175:259–264

    Article  CAS  Google Scholar 

  • Lykkesfeldt J (2000) Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris[2-carboxyethyl]phosphine hydrochloride. Anal Biochem 282:89–93

    Article  CAS  Google Scholar 

  • Nalini B, Narayanan S (2000) Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode. Anal Chim Acta 405:93–97

    Article  CAS  Google Scholar 

  • Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  • Official Analytical Chemists (1995) 16th ed. (Ed: W. Horwitz), AOAC, Washington, DC, ch. 5, p. 16

  • Pandurangachar M, Kumara Swamy BE, Chandrashekar BN, Gilbert O, Sherigara BS (2010) Electrochemical deposition of 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid on carbon paste electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J Mol Liq 158:13–17

    Article  Google Scholar 

  • Prasad R, Gupta VK, Kumar A (2004) Metallo-tetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Anal Chim Acta 508:61–70

    Article  CAS  Google Scholar 

  • Roodbari Shahmiri M, Bahari A, Karimi-Maleh H, Hosseinzadeh R, Mirnia N (2013) Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens Actuators B 177:70–77

    Article  Google Scholar 

  • Ross MA (1994) Determination of ascorbic acid and uric acid in plasma by high-performance liquid chromatography. J Chromatogr B 657:197–200

    Article  CAS  Google Scholar 

  • Salmanpour S, Tavana T, Pahlavan A, Khalilzadeh MA, Ensafi AA, Karimi-Maleh H, Beitollahi H, Kowsari E, Zareyee D (2012) Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mat Sci Eng C 32:1912–1918

    Article  CAS  Google Scholar 

  • Šljukić B, Banks CE, Compton RG (2006) Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett 6:1556–1558

    Article  Google Scholar 

  • Sood SP, Sartori LE, Wittmer DP, Haney WG (1976) High-pressure liquid chromatographic determination of ascorbic acid in selected foods and multivitamin products. Anal Chem 48:796–798

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVC–crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Anal Commu 32:21–23

    Article  CAS  Google Scholar 

  • Sun W, Li Y, Yang M, Li J, Jiao K (2008) Application of carbon ionic liquid electrode for the electrooxidative determination of catechol. Sens Actuators B 133:387–392

    Article  CAS  Google Scholar 

  • Tabata M, Morita H (1997) Spectrophotometric determination of a nanomolar amount of ascorbic acid using its catalytic effect on copper(II) porphyrin formation. Talanta 44:151–157

    Article  CAS  Google Scholar 

  • Tavana T, Khalilzadeh MA, Karimi-Maleh H, Ensafi AA, Beitollahi H, Zareyee D (2012) Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J Mol Liq 168:69–74

    Article  CAS  Google Scholar 

  • Wu J, Suls J, Sansen W (2000) Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem Commun 2:90–93

    Article  CAS  Google Scholar 

  • Yebra-Biurrun MC (2000) Flow injection determination methods of ascorbic acid. Talanta 52:367–383

    Article  CAS  Google Scholar 

  • Yu AM, Chen HY (1997) Electrocatalytic oxidation and determination of ascorbic acid at poly(glutamic acid) chemically modified electrode. Anal Chim Acta 344:181–185

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng J (2008) Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode. Talanta 77:325–330

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict(s) of interest. This work did not receive support from the university, and research has been conducted in the Laboratory of Nano Sciences in Science and Research Branch, Islamic Azad University, Mazandaran, Iran. Finally, this article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Karimi-Maleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijad, M., Karimi-Maleh, H. & Khalilzadeh, M.A. Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples. Food Anal. Methods 6, 1639–1647 (2013). https://doi.org/10.1007/s12161-013-9585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-013-9585-9

Keywords

Navigation