Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2021

24.10.2020 | Original Research

Approximate solution of singular IVPs of Lane–Emden type and error estimation via advanced Adomian decomposition method

verfasst von: Umesh, Manoj Kumar

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article aims to present a simple and effective method, named as advanced Adomian decomposition method, to attain the approximate solution of singular initial value problems of Lane–Emden type. Also, convergence analysis and error analysis with an upper bound of the absolute error for the proposed method are discussed. The proposed method is capable to remove the singular behaviour of the problems and provides an approximate solution up to the desired order. To illustrate the reliability and validity of the proposed method with error estimate several examples that arise in applications are considered and the attained outcomes are compared with some existing numerical methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lane, J.H.: On the theoretical temperature of the sun. Am. J. Sci. Arts 50, 57–74 (1870)CrossRef Lane, J.H.: On the theoretical temperature of the sun. Am. J. Sci. Arts 50, 57–74 (1870)CrossRef
2.
Zurück zum Zitat Emden, R.: Gaskugein: Anwendugen der mechanischen warmetheoric. B.G, Tewbner, Leipzig and Berlin (1907) Emden, R.: Gaskugein: Anwendugen der mechanischen warmetheoric. B.G, Tewbner, Leipzig and Berlin (1907)
3.
Zurück zum Zitat Davis, H.T.: Introduction to Non-linear Differential and Integral Equations. Dover, New York (1962) Davis, H.T.: Introduction to Non-linear Differential and Integral Equations. Dover, New York (1962)
4.
Zurück zum Zitat Chandrasekhar, S.: Introduction to Study of Stellar Structure. Dover, New York (1967) Chandrasekhar, S.: Introduction to Study of Stellar Structure. Dover, New York (1967)
5.
Zurück zum Zitat Richardson, O.U.: The emission of electricity from hot bodies. Longman, Green and Co., London (1921) Richardson, O.U.: The emission of electricity from hot bodies. Longman, Green and Co., London (1921)
6.
Zurück zum Zitat Chowdhury, M.S.H., Hashim, I.: Solutions of a class of singular second-order IVPs by homotopy-perturbation method. Phys. Lett. A 365, 439–447 (2007)MathSciNetMATHCrossRef Chowdhury, M.S.H., Hashim, I.: Solutions of a class of singular second-order IVPs by homotopy-perturbation method. Phys. Lett. A 365, 439–447 (2007)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Horedt, G.P.: Exact solutions of the Lane–Emden equation in N-dimensional space. Astron. Astrophys. 160, 148–156 (1986)MATH Horedt, G.P.: Exact solutions of the Lane–Emden equation in N-dimensional space. Astron. Astrophys. 160, 148–156 (1986)MATH
8.
Zurück zum Zitat Horedt, G.P.: Approximate analytical solutions of the Lane–Emden equation in N-dimensional space. Astron. Astrophys. 172, 359–367 (1987)MathSciNetMATH Horedt, G.P.: Approximate analytical solutions of the Lane–Emden equation in N-dimensional space. Astron. Astrophys. 172, 359–367 (1987)MathSciNetMATH
10.
Zurück zum Zitat Alzate, P.P.C., Urueña, W.A.: The Zhou’s method for solving the White-Dwarfs equation. Appl. Math. 4, 28–32 (2013) CrossRef Alzate, P.P.C., Urueña, W.A.: The Zhou’s method for solving the White-Dwarfs equation. Appl. Math. 4, 28–32 (2013) CrossRef
11.
Zurück zum Zitat Khalique, C.M., Ntsime, P.: Exact solutions of the Lane–Emden type equations. New Astron. 13(7), 476–480 (2008)CrossRef Khalique, C.M., Ntsime, P.: Exact solutions of the Lane–Emden type equations. New Astron. 13(7), 476–480 (2008)CrossRef
12.
Zurück zum Zitat Aminikhah, H., Moradian, S.: Numerical solution of singular Lane–Emden equation. ISRN Math. Phys. 2013, 1–9 (2013)MATHCrossRef Aminikhah, H., Moradian, S.: Numerical solution of singular Lane–Emden equation. ISRN Math. Phys. 2013, 1–9 (2013)MATHCrossRef
13.
Zurück zum Zitat Khan, Y., Svoboda, Z., Smarda, Z.: Solving certain classes of Lane–Emden type equations using the differential transformation method. Adv. Differ. Equ. 174, 1–11 (2012)MathSciNetMATH Khan, Y., Svoboda, Z., Smarda, Z.: Solving certain classes of Lane–Emden type equations using the differential transformation method. Adv. Differ. Equ. 174, 1–11 (2012)MathSciNetMATH
14.
Zurück zum Zitat Yigider, M., Tabatabaei, K., Celik, E.: The numerical method for solving differential equations of Lane–Emden type by Pad’e approximation. Discrete Dyn. Nat. Soc. 2011, 1–9 (2011)MATHCrossRef Yigider, M., Tabatabaei, K., Celik, E.: The numerical method for solving differential equations of Lane–Emden type by Pad’e approximation. Discrete Dyn. Nat. Soc. 2011, 1–9 (2011)MATHCrossRef
15.
Zurück zum Zitat Bhrawy, A.H., Alofi, A.S.: A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17, 62–70 (2012)MathSciNetMATHCrossRef Bhrawy, A.H., Alofi, A.S.: A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17, 62–70 (2012)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Singh, H.: An efficient computational method for the approximate solution of nonlinear Lane–Emden type equations arising in astrophysics. Astrophys. Space Sci. 363(4), 1–10 (2018)MathSciNetCrossRef Singh, H.: An efficient computational method for the approximate solution of nonlinear Lane–Emden type equations arising in astrophysics. Astrophys. Space Sci. 363(4), 1–10 (2018)MathSciNetCrossRef
17.
Zurück zum Zitat Yin, F.K., Han, W.Y., Song, J.Q.: Modified Laplace decomposition method for Lane-Emden type differential equations. Int. J. Appl. Phys. Math. 3(2), 98–102 (2013)CrossRef Yin, F.K., Han, W.Y., Song, J.Q.: Modified Laplace decomposition method for Lane-Emden type differential equations. Int. J. Appl. Phys. Math. 3(2), 98–102 (2013)CrossRef
18.
Zurück zum Zitat Chowdhury, M.S.H., Hashim, I.: Solutions of Emden-Fowler equations by homotopy-perturbation method. Nonlinear Anal. Real World Appl. 10, 104–115 (2009)MathSciNetMATHCrossRef Chowdhury, M.S.H., Hashim, I.: Solutions of Emden-Fowler equations by homotopy-perturbation method. Nonlinear Anal. Real World Appl. 10, 104–115 (2009)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Parand, K., Shahini, M., Dehghan, M.: Rational Legendre pseudospectral approach for solving non-linear differential equations of Lane–Emden type. J. Comput. Phys. 228, 8830–8840 (2009)MathSciNetMATHCrossRef Parand, K., Shahini, M., Dehghan, M.: Rational Legendre pseudospectral approach for solving non-linear differential equations of Lane–Emden type. J. Comput. Phys. 228, 8830–8840 (2009)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Ramos, J.I.: Linearization techniques for singular initial-value problems of ordinary differential equations. Appl. Math. Comput. 161, 525–542 (2005)MathSciNetMATH Ramos, J.I.: Linearization techniques for singular initial-value problems of ordinary differential equations. Appl. Math. Comput. 161, 525–542 (2005)MathSciNetMATH
22.
Zurück zum Zitat Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)MathSciNetMATHCrossRef Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141(2), 268–281 (2001)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Duan, J.S., Rach, R., Wazwaz, A.M.: Higher-order numeric solutions of the Lane–Emden type equations derived from the multi-stage modified Adomian decomposition method. Int. J. Comput. Math. 94(1), 197–215 (2015)MathSciNetMATHCrossRef Duan, J.S., Rach, R., Wazwaz, A.M.: Higher-order numeric solutions of the Lane–Emden type equations derived from the multi-stage modified Adomian decomposition method. Int. J. Comput. Math. 94(1), 197–215 (2015)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Aminikhah, H.: Solutions of the singular IVPs of Lane–Emden type equations by combining Laplace transformation and perturbation technique. Nonlinear Eng. 7(4), 273–278 (2018)MathSciNetCrossRef Aminikhah, H.: Solutions of the singular IVPs of Lane–Emden type equations by combining Laplace transformation and perturbation technique. Nonlinear Eng. 7(4), 273–278 (2018)MathSciNetCrossRef
25.
Zurück zum Zitat Bender, C.M., Milton, K.A., Pinsky, S.S., Simmons, J.L.M.: A new perturbative approach to non linear problems. J. Math. Phys. 30(7), 1447–1455 (1989)MathSciNetMATHCrossRef Bender, C.M., Milton, K.A., Pinsky, S.S., Simmons, J.L.M.: A new perturbative approach to non linear problems. J. Math. Phys. 30(7), 1447–1455 (1989)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Duan, J.S.: Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 217, 6337–6348 (2011)MathSciNetMATH Duan, J.S.: Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 217, 6337–6348 (2011)MathSciNetMATH
29.
30.
Zurück zum Zitat Kaliyappan, M., Hariharan, S.: Symbolic computation of Adomian polynomials based on Rach’s rule. Br. J. Math. Comput. Sci. 5(5), 562–570 (2015)CrossRef Kaliyappan, M., Hariharan, S.: Symbolic computation of Adomian polynomials based on Rach’s rule. Br. J. Math. Comput. Sci. 5(5), 562–570 (2015)CrossRef
31.
Zurück zum Zitat Liu, J.G., Yang, X.J., Feng, Y.Y.: On integrability of the time fractional nonlinear heat conduction equation. J. Geom. Phys. 144, 190–198 (2019)MathSciNetMATHCrossRef Liu, J.G., Yang, X.J., Feng, Y.Y.: On integrability of the time fractional nonlinear heat conduction equation. J. Geom. Phys. 144, 190–198 (2019)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P.: On group analysis of the time fractional extended (2+1)-dimensional Zakharov-Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 178, 407–421 (2020)MathSciNetMATHCrossRef Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P.: On group analysis of the time fractional extended (2+1)-dimensional Zakharov-Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 178, 407–421 (2020)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Feng, Y.Y., Yang, X.J., Liu, J.G.: On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative. Chin. J. Phys. 66, 269–276 (2020)MathSciNetCrossRef Feng, Y.Y., Yang, X.J., Liu, J.G.: On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative. Chin. J. Phys. 66, 269–276 (2020)MathSciNetCrossRef
35.
Zurück zum Zitat Cherruault, Y., Adomian, G.: Decomposition methods: a new proof of convergence. Comput. Math. Appl. 18(12), 103–106 (1993)MathSciNetMATH Cherruault, Y., Adomian, G.: Decomposition methods: a new proof of convergence. Comput. Math. Appl. 18(12), 103–106 (1993)MathSciNetMATH
36.
Zurück zum Zitat Abdelrazec, A., Pelinovsky, D.: Convergence of the Adomian decomposition method for initial-value problems. Numer. Methods Partial Differ. Equ. 27(4), 749–766 (2009)MathSciNetMATHCrossRef Abdelrazec, A., Pelinovsky, D.: Convergence of the Adomian decomposition method for initial-value problems. Numer. Methods Partial Differ. Equ. 27(4), 749–766 (2009)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Ray, S.S.: New approach for general convergence of the Adomian decomposition method. World Appl. Sci. J. 32(11), 2264–2268 (2014) Ray, S.S.: New approach for general convergence of the Adomian decomposition method. World Appl. Sci. J. 32(11), 2264–2268 (2014)
39.
40.
Zurück zum Zitat Warne, P.G., Polignone, W.D.A., Sochacki, J.S., Parker, G.E., Carothers, D.C.: Explicit A—priori error bounds and Adaptive error control for approximation of non-linear initial value differential systems. Comput. Math. Appl. 52, 1695–1710 (2006)MathSciNetMATHCrossRef Warne, P.G., Polignone, W.D.A., Sochacki, J.S., Parker, G.E., Carothers, D.C.: Explicit A—priori error bounds and Adaptive error control for approximation of non-linear initial value differential systems. Comput. Math. Appl. 52, 1695–1710 (2006)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Yuzbasi, S.: A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics. Math. Methods Appl. Sci. 34, 2218–2230 (2011)MathSciNetMATHCrossRef Yuzbasi, S.: A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics. Math. Methods Appl. Sci. 34, 2218–2230 (2011)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Wazwaz, A.M.: A new algorithm for solving differential equations of Lane–Emden type. Appl. Math. Comput. 118, 287–310 (2001)MathSciNetMATH Wazwaz, A.M.: A new algorithm for solving differential equations of Lane–Emden type. Appl. Math. Comput. 118, 287–310 (2001)MathSciNetMATH
43.
Zurück zum Zitat Doha, E.H., Bhrawy, A.H., Hafez, R.M., Gorder, R.A.: A Jacobi rational pseudospectral method for Lane–Emden initial value problems arising in astrophysics on a semi-infinite interval. Comput. Appl. Math. 33, 607–619 (2014)MathSciNetMATHCrossRef Doha, E.H., Bhrawy, A.H., Hafez, R.M., Gorder, R.A.: A Jacobi rational pseudospectral method for Lane–Emden initial value problems arising in astrophysics on a semi-infinite interval. Comput. Appl. Math. 33, 607–619 (2014)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Mall, S., Chakraverty, S.: Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput. 247, 100–114 (2014)MathSciNetMATH Mall, S., Chakraverty, S.: Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput. 247, 100–114 (2014)MathSciNetMATH
45.
Zurück zum Zitat Pandey, R.K., Kumar, N.: Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New Astron. 17(3), 303–308 (2012)CrossRef Pandey, R.K., Kumar, N.: Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New Astron. 17(3), 303–308 (2012)CrossRef
Metadaten
Titel
Approximate solution of singular IVPs of Lane–Emden type and error estimation via advanced Adomian decomposition method
verfasst von
Umesh
Manoj Kumar
Publikationsdatum
24.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2021
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01444-2

Weitere Artikel der Ausgabe 1-2/2021

Journal of Applied Mathematics and Computing 1-2/2021 Zur Ausgabe