Skip to main content
Log in

Characteristics of diffusion-weighted stimulated echo pulse sequence in human skeletal muscle

Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The aim of our study was to simulate an effective diffusion-weighted imaging (DWI) pulse sequence and to evaluate the best b value in skeletal muscle. The evaluated pulse sequences were spin echo (SE), stimulated echo (STE), and gradient-recalled echo (GRE). The signal intensity changed in some DWI pulse sequences when the b value was changed. Moreover, the static magnetic field of 1.5 T was compared with that of 3.0 T. Next, diffusion tensor imaging of the human skeletal muscle was measured. The experimental subjects were healthy male volunteers (n = 7; age 21.8 ± 1.1 years). We changed the b value in steps of 100 s/mm2 from 0 to 2000 s/mm2, and the diffusion values [fractional anisotropy (FA), λ 1, λ 2, and λ 3] were calculated based on the data. The STE method could maintain signals up to b values of 1300 s/mm2, but the SE and GRE methods suffered from high noise. In the human study, the mean FA (±SD) was 0.41 ± 0.02 in the tibialis anterior muscle (TA) and 0.31 ± 0.02 in the soleus muscle (SOL) at a b value of 1000 s/mm2. The correlation of the FA with the b value coefficient and the P value by Student’s t test were r = 0.981 and P < 0.001 for the TA and r = 0.982, P < 0.001 for the SOL. However, the FA became high with a low b value. In conclusion, STE was very useful for DWI in a short T 2-value tissue. Moreover, a minimum b value of 800 s/mm2 was necessary for evaluation of human skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR. 2004;183:343–51.

    Google Scholar 

  2. Heemskerk AM, Strijkers GJ, Vilanova A, Drost MR, Nicalay K. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging. Magn Reson Med. 2005;53:1333–40.

    Article  PubMed  Google Scholar 

  3. Heemskerk AM, Drost MR, Bochove GS, Oosterhout MFM, Nicolay K, Strijkers G. DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle. Magn Reson Med. 2006;56:272–81.

    Article  PubMed  Google Scholar 

  4. Galban CJ, Maderwald S, Uffmann K, Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol. 2004;93:253–62.

    Article  PubMed  Google Scholar 

  5. Sinha U, Yao L. In vivo diffusion tensor imaging of human calf muscle. J Magn Reson Imaging. 2002;15:87–95.

    Article  PubMed  Google Scholar 

  6. Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JG. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med. 2002;48:97–104.

    Article  PubMed  Google Scholar 

  7. Tanner JE. Use of the stimulated echo in NMR diffusion studies. J Chem Phys. 1970;52:2523–6.

    Google Scholar 

  8. Lehnert A, Machann J, Helms G, Claussen CD, Schick F. Diffusion characteristics of large molecules assessed by proton MRS on a whole-body MR system. Magn Reson Imag. 2004;22:39–46.

    Article  CAS  Google Scholar 

  9. Bihan DL. Diffusion and perfusion magnetic resonance imaging. New York: Raven Press; 1995. p. 28–41.

    Google Scholar 

  10. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  11. Li TO, Takahashi AM, Hindmarsh T, Moseley ME. ADC mapping by means of a single-shot spiral MRI technique with application in acute cerebral ischemia. Magn Reson Med. 1999;41:143–7.

    Article  PubMed  CAS  Google Scholar 

  12. Haase A. Snapshot FLASH MRI applications to T 1, T 2, and chemical-shift imaging. Magn Reson Med. 1990;13:77–89.

    Article  PubMed  CAS  Google Scholar 

  13. Rossia C, Bossa A, Haap M, Martirosian P, Claussen CD, Schick F. Whole-body \( T_{2}^{*} \) mapping at 1.5 T. Magn Reson Imag. 2009;27:489–96.

    Google Scholar 

  14. Steidle G, Schick F. Echoplaner diffusion tensor imaging of the lower leg musculature using eddy current nulled stimulated echo preparation. Magn Reson Med. 2006;55:541–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kwan RKS, Evan AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imag. 1999;18(11):1085–97.

    Article  CAS  Google Scholar 

  16. Dudink J, Larkman DJ, Kapellou O, Boardman JP, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA, Counsell SJ. High b value diffusion tensor imaging of the neonatal brain at 3T. AJNR. 2008;29:1966–72.

    Article  PubMed  CAS  Google Scholar 

  17. Linera JA, Leon JB, Escribano J, Rey G. Predicting the histopathological grade of cerebral gliomas using high b value MR DE imaging at 3-Tesla. J Neuroimaging. 2008;18:276–81.

    Article  Google Scholar 

  18. Cihangiroglu M, Ulug AM, Firat Z, Bayram A, Kovanlikaya A, Kovanlikaya I. High b value diffusion-weighted MR imaging of normal brain at 3T. Eur J Radiol. 2009;69:454–8.

    Article  PubMed  Google Scholar 

  19. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11(4):425–48.

    Article  PubMed  CAS  Google Scholar 

  20. Bihan DL. Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology. 2008;249(3):748–52.

    Article  PubMed  Google Scholar 

  21. Karampinos DC, King KF, Sutton BP, Georgiadis JG. Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature. J Magn Reson Imaging. 2010;31:942–53.

    Article  PubMed  Google Scholar 

  22. Bastin ME. Correction of Eddy current-induced artifacts in diffusion tensor imaging using iterative cross-correlation. Magn Reson Imag. 1999;17(7):1011–24.

    Article  CAS  Google Scholar 

  23. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. USA: Elsevier Academic Press; 2004. p. 960–1.

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by a Ministry of Education, Culture, Sports, Science, and Technology, Grant-in-Aid for Young Scientists (B), No. 23791399, 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Hata.

About this article

Cite this article

Hata, J., Yagi, K., Hikishima, K. et al. Characteristics of diffusion-weighted stimulated echo pulse sequence in human skeletal muscle. Radiol Phys Technol 6, 92–97 (2013). https://doi.org/10.1007/s12194-012-0174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-012-0174-1

Keywords

Navigation