Skip to main content
Log in

Rule-Based Simulation of Multi-Cellular Biological Systems—A Review of Modeling Techniques

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Emergent behaviors of multi-cellular biological systems (MCBS) result from the behaviors of each individual cells and their interactions with other cells and with the environment. Modeling MCBS requires incorporating these complex interactions among the individual cells and the environment. Modeling approaches for MCBS can be grouped into two categories: continuum models and cell-based models. Continuum models usually take the form of partial differential equations, and the model equations provide insight into the relationship among the components in the system. Cell-based models simulate each individual cell behavior and interactions among them enabling the observation of the emergent system behavior. This review focuses on the cell-based models of MCBS, and especially, the technical aspect of the rule-based simulation method for MCBS is reviewed. How to implement the cell behaviors and the interactions with other cells and with the environment into the computational domain is discussed. The cell behaviors reviewed in this paper are division, migration, apoptosis/necrosis, and differentiation. The environmental factors such as extracellular matrix, chemicals, microvasculature, and forces are also discussed. Application examples of these cell behaviors and interactions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alber, M. S., M. A. Kiskowski, J. A. Glazier, and Y. Jiang. On cellular automaton approaches to modeling biological cells. In: Mathematical Systems Theory in Biology, Communications, Computation, and Finance, edited by J. Rosenthal, and D. S. Gilliam. New York: Springer-Verlag, 2003, pp. 1–40.

    Google Scholar 

  2. Ausk, B. J., T. S. Gross, and S. Srinivasan. An agent based model for real-time signaling induced in osteocytic networks by mechanical stimuli. J. Theor. Biol. 39:2638–2646, 2006.

    Google Scholar 

  3. Bailey, A. M., M. B. Lawrence, H. Shang, A. J. Katz, and S. M. Peirce. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin. PLoS Comput. Biol. 5:e1000294, 2009.

    Article  Google Scholar 

  4. Bailey, A. M., B. C. Thorne, and S. M. Peirce. Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35:916–936, 2007.

    Article  Google Scholar 

  5. Bartha, K., and H. Rieger. Vascular network remodeling via vessel cooption, regression and growth in tumors. J. Theor. Biol. 241:903–918, 2006.

    MathSciNet  Google Scholar 

  6. Bonabeau, E. Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl Acad. Sci. USA 99:7280–7287, 2002.

    Article  Google Scholar 

  7. Byrne, H., and D. Drasdo. Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58:657–687, 2009.

    Article  MathSciNet  Google Scholar 

  8. Chavali, A. K., E. P. Gianchandani, K. S. Tung, M. B. Lawrence, S. M. Peirce, and J. A. Papin. Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling. Trends Immunol. 29:589–599, 2008.

    Article  Google Scholar 

  9. Checa, S., and P. J. Prendergast. A mechanobiological model for tissue differentiation that includes angiogenesis: A lattice-based modeling approach. Ann. Biomed. Eng. 37:129–145, 2009.

    Article  Google Scholar 

  10. Cheng, G., B. B. Youssef, P. Markenscoff, and K. Zygourakis. Cell population dynamics modulate the rates of tissue growth processes. Biophys. J. 90:713–724, 2006.

    Article  Google Scholar 

  11. Deutsch, A., and S. Dormann. Cellular Automaton Modeling of Biological Pattern Formation. Boston: Birkhäuser, 2005.

    MATH  Google Scholar 

  12. Dormann, S., and A. Deutsch. Modeling self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2:0035, 2002.

    Google Scholar 

  13. Elliott, E., and L. D. Kiel. Agent-based modeling in the social and behavioral sciences. Nonlinear Dynam., Psych., Life Sci. 8:121–130, 2004.

    Google Scholar 

  14. Engelberg, J. A., G. E. P. Ropella, and C. A. Hunt. Essential operating principles for tumor spheroid growth. BMC Syst. Biol. 2:110, 2008.

    Article  Google Scholar 

  15. Ermentrout, G. B., and L. Edelstein-Keshet. Cellular automata approaches to biological modeling. J. Theor. Biol. 160:97–133, 1993.

    Article  Google Scholar 

  16. Ferreira, Jr., S. C., M. L. Martins, and M. J. Vilela. Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E 65:021907, 2002.

    Article  MathSciNet  Google Scholar 

  17. Frisch, U., B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56:1505–1508, 1986.

    Article  Google Scholar 

  18. Galle, J., M. Hoffmann, and G. Aust. From single cells to tissue architecture—a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J. Math. Biol. 58:261–283, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  19. Galle, J., M. Loeffler, and D. Drasdo. Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys. J. 88:62–75, 2005.

    Article  Google Scholar 

  20. Galvão, V., J. G. V. Miranda, and R. Ribeiro-dos-Santos. Development of a two-dimensional agent-based model for chronic chagasic cardiomyopathy after stem cell transplantation. Bioinformatics 24:2051–2056, 2008.

    Article  Google Scholar 

  21. Garbey, M., C. Mony, and M. Smaoui. Fluid flow-agent based hybrid model for the simulation of virtual prairies. Proceedings of the Conference of Parallell CFD, Lyon, 2008, to appear.

  22. Gardner, M. Mathematical games: the fantastic combinations of John Conway’s new solitaire game “Life”. Sci. Am. 223:120–123, 1970.

    Article  Google Scholar 

  23. Gerlee, P., and A. R. A. Anderson. An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246:583–603, 2007.

    Article  MathSciNet  Google Scholar 

  24. Gerlee, P., and A. R. A. Anderson. A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype. J. Theor. Biol. 250:705–722, 2008.

    Article  Google Scholar 

  25. Gevertz, J. L., and S. Torquato. Modeling the effects of vasculature evolution on early brain tumor growth. J. Theor. Biol. 243:517–531, 2006.

    Article  MathSciNet  Google Scholar 

  26. Gilbert, N. Agent-Based Models. Los Angeles: Sage Publications, 2008.

    Google Scholar 

  27. Grabe, N., and K. Neuber. A multicellular systems biology model predicts epidermal morphology, kinetics and Ca2+ flow. Bioinformatics 21:3541–3547, 2005.

    Article  Google Scholar 

  28. Grant, M. R., K. E. Mostov, T. D. Tisty, and C. A. Hunt. Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol. 2:e129, 2006.

    Article  Google Scholar 

  29. Grimm, V., and S. F. Railsback. Individual-Based Modeling and Ecology. Princeton: Princeton University Press, 2005.

    MATH  Google Scholar 

  30. Guo, Z., P. M. A. Sloot, and J. C. Tay. A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol. 255:163–175, 2008.

    Article  Google Scholar 

  31. Holland, J. H. Hidden Order, How Adaptation Builds Complexity. Helix Books, 1995.

  32. Jiang, Y., J. Pjesivac-Grbovic, C. Cantrell, and J. P. Freyer. A multiscale model for avascular tumor growth. Biophys. J. 89:3884–3894, 2005.

    Article  Google Scholar 

  33. Kansal, A. R., S. Torquato, G. R. Harsh IV, E. A. Chiocca, and T. S. Deisboeck. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203:367–382, 2000.

    Article  Google Scholar 

  34. Lao, B. J., and D. T. Kamei. Investigation of cellular movement in the prostate epithelium using an agent-based model. J. Theor. Biol. 250:642–654, 2008.

    Article  Google Scholar 

  35. Mallet, D. G., and L. G. De Pillis. A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239:334–350, 2006.

    Article  Google Scholar 

  36. Mansury, Y., and T. S. Deisboeck. The impact of “search precision” in an agent-based tumor model. J. Theor. Biol. 224:325–337, 2003.

    Article  MathSciNet  Google Scholar 

  37. Mi, Q., B. Rivière, G. Clermont, D. L. Steed, and Y. Vodovotz. Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-β1. Wound Repair Regen. 15:671–682, 2007.

    Article  Google Scholar 

  38. N’Dri, N. A., W. Shyy, and R. Tran-Son-Tay. Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85:2273–2286, 2003.

    Article  Google Scholar 

  39. Neumann, J. V. Theory of Self-Reproducing Automata, edited and completed by A. W. Burks. Urbana: University of Illinois Press, 1966.

  40. O’Sullivan, D. Graph-cellular automata: a generalised discrete urban and regional model. Environ. Plann. B 28:687–705, 2001.

    Article  Google Scholar 

  41. Palsson, E. A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J. Theor. Biol. 254:1–13, 2008.

    Article  MathSciNet  Google Scholar 

  42. Pérez, M. A., and P. J. Prendergast. Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J. Biomech. 40:2244–2253, 2007.

    Article  Google Scholar 

  43. Piotrowska, M. J., and S. D. Angus. A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J. Theor. Biol. 258:165–178, 2009.

    Article  Google Scholar 

  44. Qutub, A. A., and A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3:13, 2009.

    Article  Google Scholar 

  45. Robertson, S. H., C. K. Smith, A. L. Langhans, S. E. McLinden, M. A. Oberhardt, K. R. Jakab, B. Dzamba, D. W. DeSimone, J. A. Papin, and S. M. Peirce. Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior. BMC Syst. Biol. 1:46, 2007.

    Article  Google Scholar 

  46. Schaller, G., and M. Meyer-Hermann. A modelling approach towards epidermal homoeostasis control. J. Theor. Biol. 247:554–573, 2007.

    Article  MathSciNet  Google Scholar 

  47. Simpson, M. J., A. Merrifield, K. A. Landman, and B. D. Hughes. Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. Phys. Rev. E 76:021918, 2007.

    Article  Google Scholar 

  48. Smaoui, M., M. Garbey, and C. Mony. Volunteer computing for ecology: the virtual prairie BOINC project. IEEE Asia-Pacific Services Computing Conference (IEEE APSCC 2008), Taiwan, 2008, accepted for publication.

  49. Thorne, B. C., A. M. Bailey, D. W. DeSimone, and S. M. Peirce. Agent-based modeling of multicell morphogenic processes during development. Birth Defects Res. C Embryo Today 81:344–353, 2007.

    Article  Google Scholar 

  50. Thorne, B. C., A. M. Bailey, and S. M. Peirce. Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief Bioinform. 8:245–257, 2007.

    Article  Google Scholar 

  51. Tran-Son-Tay, R., M. Hwang, M. Garbey, Z. Jiang, C. K. Ozaki, and S. A. Berceli. An experiment-based model of vein graft remodeling induced by shear stress. Ann. Biomed. Eng. 36:1083–1091, 2008.

    Article  Google Scholar 

  52. Walker, D. C., J. Southgate, G. Hill, M. Holcombe, D. R. Hose, S. M. Wood, S. Mac Neil, and R. H. Smallwood. The epitheliome: agent-based modelling of the social behaviour of cells. BioSystems 76:89–100, 2004.

    Article  Google Scholar 

  53. Wolfram, S. A New Kind of Science. Champaign: Wolfram Media, 2002.

    MATH  Google Scholar 

  54. Zhang, L., C. A. Athale, and T. S. Deisboeck. Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244:96–107, 2007.

    Article  MathSciNet  Google Scholar 

  55. Zhang, L., Z. Wang, J. A. Sagotsky, and T. S. Deisboeck. Multiscale agent-based cancer modeling. J. Math. Biol. 58:545–559, 2009.

    Article  MathSciNet  Google Scholar 

  56. Zygourakis, K., G. Cheng, and P. Markenscoff. Dynamic behavior of heterogeneous cell populations growing under mass transport limitations. Biophys. J. 96:317a, 2009.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH (R01-HL095508-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Tran-Son-Tay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, M., Garbey, M., Berceli, S.A. et al. Rule-Based Simulation of Multi-Cellular Biological Systems—A Review of Modeling Techniques. Cel. Mol. Bioeng. 2, 285–294 (2009). https://doi.org/10.1007/s12195-009-0078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0078-2

Keywords

Navigation