Skip to main content
Log in

Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Flower-like CuS nanostructures have been synthesized via a liquid precipitation route by the reaction between CuCl2·2H2O and thioacetamide (CH3CSNH2, TAA) in the ionic liquid 1-butyl-3-methyl imidazole six hexafluorophosphoric acid salts ([BMIM][PF6]) aqueous solution at room temperature. The products were characterized by X-ray powder diffraction (XRD), field emission scanning electronic microscopy (FESEM), Brunauer-Emmett-Teller (BET), Ultraviolet-Visible Spectrophotometer (UV-Vis) and Photoluminescence (PL) techniques. The as-prepared CuS nanostructures have a mean diameter of about 1 μm. A plausible mechanism was proposed to explain the formation of CuS nanostructures. The effects of experimental parameters on the formation of the products were also explored. With BET theory, it is found that the as-prepared CuS nanostructures have a specific area of 39m2/g. The Barrett-Joyner-Halenda (BJH) pore size distribution of the as-prepared CuS nanostructures presents smaller pores centers about 60 nm.The UV-Vis and PL curves indicate that the asprepared CuS nanostructures are promising candidates for the development of photoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang K J, Li G D, Wang Q, Chen J S. Formation of singlecrystalline CuS nanoplates vertically standing on flat substrate. Crystal Growth & Design, 2007, 7(11): 2265–2267

    Article  Google Scholar 

  2. Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 2000, 1(65): 1–31

    Article  Google Scholar 

  3. Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8–9): 1693–1607

    Article  Google Scholar 

  4. Raevskaya A E, Stroyuk A U, Kuchmii S Y, Kryukov A I. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. Journal of Molecular Catalysis A: Chemical, 2004, 212(1–2): 259–265

    Article  Google Scholar 

  5. Zhang Y C, Qian T, Hu X Y, Zhou W D. A facile low temperature solvothermal route to copper monosulfide submicrotubes. Materials Research Bulletin, 2005, 40(10): 1696–1704

    Article  Google Scholar 

  6. Barrelet C J, Wu Y, Bell D C, Lieber C M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society, 2003, 125(38): 11498–11499

    Article  Google Scholar 

  7. Xue P C, Lu R, Huang Y, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y Y. Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir, 2004, 20(15): 6470–6475

    Article  Google Scholar 

  8. Xue P C, Lu R, Li D M, Jin M, Tan C, Bao C, Wang Z, Zhao Y, Zhao Y Y. Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir, 2004, 20(25): 11234–11239

    Article  Google Scholar 

  9. Tan C H, Zhu Y L, Lu R, Xue P C, Bao C Y, Liu X L, Fei Z P, Zhao Y Y. Synthesis of copper sulfide nanotube in the hydrogel system. Materials Chemistry and Physics, 2005, 91(1): 44–47

    Article  Google Scholar 

  10. Wu C Y, Yu S H, Chen S F, Liu G N, Liu B H. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mile conditions. Journal of Materials Chemistry, 2006, 16(32): 3326–3331

    Article  Google Scholar 

  11. Ge L, Jing X Y, Wang J, Jamil S, Liu Q, Song D L, Xie Y, Yang P P, Zhang M L. Ionic liquid-assisted synthesis of CuS nestlike hollow spheres assembled by microflakes using an oil water interface route. Crystal Growth & Design, 2010, 10(4): 1688–1692

    Article  Google Scholar 

  12. Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials, 2008, 20(19): 6263–6369

    Article  Google Scholar 

  13. Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422–427

    Article  Google Scholar 

  14. Zhu L Y, Xie Y, Zheng XW, Liu X, Zhou G E. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. Journal of Crystal Growth, 2004, 260(3–4): 494–499

    Article  Google Scholar 

  15. Zhang Y C, Hu X Y, Qiao T. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Communications, 2004, 132(11): 779–782

    Article  Google Scholar 

  16. Roy P, Mondal K, Srivastzva S K. Synthesis of twinned CuS nanorods by a simple wet chemical method. Crystal Growth & Design, 2008, 5(8): 1530–1534

    Article  Google Scholar 

  17. Gao L, Wang E B, Lian S Y, Kang Z H, Lan Y, Wu D. Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Communications, 2004, 130(5): 309–312

    Article  Google Scholar 

  18. van Rantwijk F, Sheldon R A. Biocatalysis in ionic liquids. Chemical Reviews, 2007, 107(6): 2757–2785

    Article  Google Scholar 

  19. Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445–14448

    Article  Google Scholar 

  20. Qin Y, Song N J, Zhao N N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chemistry of Materials, 2008, 20(12): 3965–3972

    Article  Google Scholar 

  21. Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society, 2005, 127(15): 5316–5317

    Article  Google Scholar 

  22. Thirumurugan A. Use of ionic liquids in synthesis of nanocrystals, nanorods and nanowires of elemental chalcogens. Bulletin of Materials Science, 2007, 30(2): 179–182

    Article  Google Scholar 

  23. Movahedi M, Kowsari E, Mahjoub A R, Yavari I. A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method. Materials Letters, 2008, 62(23): 3856–3858

    Article  Google Scholar 

  24. Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B, 2005, 109(10): 4361–4364

    Article  Google Scholar 

  25. Zhu Y J, Wang W W, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie, 2004, 43(11): 1410–1414

    Article  Google Scholar 

  26. Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chemistry of Materials, 2006, 18(13): 3162–3168

    Article  Google Scholar 

  27. He Y H, Li D Z, Chen Z X, Chen Y B, Fu X Z. New synthesis of single-crystalline InVO4 nanorods using an ionic liquid. Journal of the American Ceramic Society, 2007, 90(11): 3698–3703

    Article  Google Scholar 

  28. Tang G H. Synthesis of nanometer powders by liquid precipitation. Shanxi Chemical Industry, 2005, 25(3): 8–10 (in Chinese)

    Google Scholar 

  29. Ding T Y, Wang M S, Guo S P, Guo G C, Huang J S. CuS nanoflowers prepared by a polyol route and their photocatalytic property. Materials Letters, 2008, 62(30): 4529–4531

    Article  Google Scholar 

  30. Zhang J, Zhang Z K. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(15): 2279–2281

    Article  Google Scholar 

  31. Thongtem T, Phuruangrant A, Thongtem S. Formation of CuS with flower like, hollow spherical, and tubular structures using the solvothermal-microwave process. Current Applied Physics, 2009, 9(1): 195–200

    Article  Google Scholar 

  32. Pereiro A B, Legido J L, Rodríguez A. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. Journal of Chemical Thermodynamics, 2007, 39(8): 1168–1175

    Article  Google Scholar 

  33. Zhang J, Zhang Z K. Shape-controlled synthesis of CuS nanocrystallites via a facial solution route. Journal of Functional Materials, 2007, 38: 2056–2058

    Google Scholar 

  34. Xu H L, Wang W Z, Zhu W, Zhou L. Synthesis of octahedral CuS nanocages via a solid-liquid reaction. Nanotechnology, 2006, 17(15): 3649–3654

    Article  Google Scholar 

  35. Chen L F, Yu W, Li Y. Synthesis and characterization of tuber CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1–2): 52–54

    Article  Google Scholar 

  36. Li F, Kong T, Bi W T, Li D C, Li Z, Huang X T. Synthesis and optical of CuS nanoplate-based architectures by a solvothermal method. Applied Surface Science, 2009, 255(12): 6285–6289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Li, Q., Wang, Y. et al. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid. Front. Optoelectron. China 4, 150–155 (2011). https://doi.org/10.1007/s12200-011-0167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-011-0167-4

Keywords

Navigation