Skip to main content
Log in

Photonic crystal fibers, devices, and applications

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

This paper reviews different types of air-silica photonic crystal fibers (PCFs), discusses their novel properties, and reports recent advances in PCF components and sensors as well as techniques for splicing PCFs to standard telecomm fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica singlemode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547–1549

    Article  Google Scholar 

  2. Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963

    Article  Google Scholar 

  3. Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537–1539

    Article  Google Scholar 

  4. Broderick N G R, Monro T M, Bennett P J, Richardson D J. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 1999, 24(20): 1395–1397

    Article  Google Scholar 

  5. Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P, St J. Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25(18): 1325–1327

    Article  Google Scholar 

  6. Ju J, Jin W, Demokan M S. Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1375–1377

    Article  Google Scholar 

  7. Knight J, Birks T, Russell P, de Sandro J. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1998, 15(3): 748

    Article  Google Scholar 

  8. Mortensen N A, Folkenberg J R, Nielsen MD, Hansen K P. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879–1881

    Article  Google Scholar 

  9. Nielsen M D, Mortensen N A, Folkenberg J R, Bjarklev A. Mode-field radius of photonic crystal fibers expressed by the V parameter. Optics Letters, 2003, 28(23): 2309–2311

    Article  Google Scholar 

  10. Kuhlmey B T, McPhedran R C, Martijn de Sterke C. Modal cutoff in microstructured optical fibers. Optics Letters, 2002, 27(19): 1684–1686

    Article  Google Scholar 

  11. Folkenberg J R, Mortensen N A, Hansen K P, Hansen T P, Simonsen H R, Jakobsen C. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Optics Letters, 2003, 28(20): 1882–1884

    Article  Google Scholar 

  12. Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C. Highpower air-clad large-mode-area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818–823

    Article  Google Scholar 

  13. Blake J N, Kim B Y, Shaw H J. Fiber-optic modal coupler using periodic microbending. Optics Letters, 1986, 11(3): 177

    Article  Google Scholar 

  14. Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters, 1986, 11 (9): 581–583

    Article  Google Scholar 

  15. Kim B Y, Blake J N, Engan H E, Shaw H J. All-fiber acousto-optic frequency shifter. Optics Letters, 1986, 11(6): 389–391

    Article  Google Scholar 

  16. Poole C D, Wiesenfeld J M, McCormick A R, Nelson K T. Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber. Optics Letters, 1992, 17(14): 985–987

    Article  Google Scholar 

  17. Park H S, Song K Y, Yun S H, Kim B Y. All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers. Journal of Lightwave Technology, 2002, 20(10): 1864–1868

    Article  Google Scholar 

  18. Murphy K A, Miller M S, Vengsarkar A M, Claus R O. Ellipticalcore two mode optical-fiber sensor implementation methods. Journal of Lightwave Technology, 1990, 8(11): 1688–1696

    Article  Google Scholar 

  19. Vengsarkar A M, Michie WC, Jankovic L, Culshaw B, Claus R O. Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature. Journal of Lightwave Technology, 1994, 12(1): 170–177

    Article  Google Scholar 

  20. Kim B Y, Blake J N, Huang S Y, Shaw H J. Use of highly elliptical core fibers for two-mode fiber devices. Optics Letters, 1987, 12(9): 729–731

    Article  Google Scholar 

  21. Jin W, Wang Z, Ju J. Two-mode photonic crystal fibers. Optics Express, 2005, 13(6): 2082–2088

    Article  Google Scholar 

  22. Hong K S, Park H C, Kim B Y, Hwang I K, Jin W, Ju J, Yeom D I. 1000 nm tunable acousto-optic filter based on photonic crystal fiber. 1000 nm tunable acousto-optic filter based on photonic crystal fiber. Applied Physics Letters, 2008, 92(3): 031110

    Article  Google Scholar 

  23. Engan H E, Kim B Y, Blake J N, Shaw H J. Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. Journal of Lightwave Technology, 1988, 6(3): 428–436

    Article  Google Scholar 

  24. Yun S H, Hwang I K, Kim B Y. All-fiber tunable filter and laser based on two-mode fiber. Optics Letters, 1996, 21(1): 27–29

    Article  Google Scholar 

  25. Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676–680

    Article  Google Scholar 

  26. Hansen T P, Broeng J, Libori S E B, Knudsen E, Bjarklev A, Jensen J R, Simonsen H. Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13(6): 588–590

    Article  Google Scholar 

  27. Folkenberg J, Nielsen M, Mortensen N, Jakobsen C, Simonsen H. Polarization maintaining large mode area photonic crystal fiber. Optics Express, 2004, 12(5): 956–960

    Article  Google Scholar 

  28. Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(1): 182–184

    Article  Google Scholar 

  29. Ju J, Jin W, Demokan M S. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825–830

    Article  Google Scholar 

  30. Marcuse D. Light Transmission Optics. New York: Van Nostrand Reinhold, 1982

    Google Scholar 

  31. White T P, McPhedran R C, de Sterke C M, Botten L C, Steel M J. Confinement losses in microstructured optical fibers. Optics Letters, 2001, 26(21): 1660–1662

    Article  Google Scholar 

  32. Ju J, Jin W, Demokan M S. Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(11): 2472–2474

    Article  Google Scholar 

  33. Ju J, Wang Z, Jin W, Demokan M S. Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor. IEEE Photonics Technology Letters, 2006, 18(20): 2168–2170

    Article  Google Scholar 

  34. Agrawal G P. Nonlinear Fiber Optics. New York: Academic Presss, 2007

    Google Scholar 

  35. Finazzi V, Monro T M, Richardson D J. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America. B, Optical Physics, 2003, 20(7): 1427

    Article  Google Scholar 

  36. Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R C, Frampton K, Koizumi F, Richardson D, Monro T M. Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12(21): 5082–5087

    Article  Google Scholar 

  37. Kiang K M, Frampton K, Monro T M, Moore R, Tucknott J, Hewak DW, Richardson D J, Rutt H N. Extruded singlemode nonsilica glass holey optical fibres. Electronics Letters, 2002, 38(12): 546

    Article  Google Scholar 

  38. Kumar V V R, George A K, Reeves W H, Knight J C, Russell P St J, Omenetto F G, Taylor A J. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520–1525

    Article  Google Scholar 

  39. Kumar V V R, George A K, Knight J C, Russell P St J. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641–2645

    Article  Google Scholar 

  40. Monro TM, West Y D, Hewak DW, Broderick N G R, Richardson D J. Chalcogenide holey fibres. Electronics Letters, 2000, 36(24): 1998

    Article  Google Scholar 

  41. Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 2001, 9(13): 687–697

    Article  Google Scholar 

  42. Reeves W H, Knight J C, Russell P St J, Roberts P J. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14): 609–613

    Article  Google Scholar 

  43. Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 2003, 11(8): 843–852

    Article  Google Scholar 

  44. Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 2003, 11(13): 1503–1509

    Article  Google Scholar 

  45. Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters, 2003, 28(12): 989–991

    Article  Google Scholar 

  46. Shen L P, Huang W P, Jian S S. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 2003, 21(7): 1644–1651

    Article  Google Scholar 

  47. Hoo Y L, Jin W, Ju J, Ho H L, Wang D N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion. Optics Communications, 2004, 242(4-6): 327–332

    Article  Google Scholar 

  48. Hoo Y L, Jin W, Ho H L, Wang D N, Windeler R S. Evanescentwave gas sensing using microstructure fiber. Optical Engineering (Redondo Beach, Calif.), 2002, 41(1): 8–9

    Google Scholar 

  49. Hoo Y L, Jin W, Shi C Z, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509–3515

    Article  Google Scholar 

  50. Stolen R H, Lee C, Jain R K. Development of the stimulated Raman spectrum in single-mode silica fibers. Journal of the Optical Society of America. B, Optical Physics, 1984, 1(4): 652

    Google Scholar 

  51. Baldeck P L, Alfano R R. Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. Journal of Lightwave Technology, 1987, 5(12): 1712–1715

    Article  Google Scholar 

  52. Ilev I, Kumagai H, Toyoda K, Koprinkov I. Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. Applied Optics, 1996, 35(15): 2548–2553

    Article  Google Scholar 

  53. Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27

    Article  Google Scholar 

  54. Coen S, Chau A H C, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, 26(17): 1356–1358

    Article  Google Scholar 

  55. Coen S, Chau A H L, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 753–764

    Article  Google Scholar 

  56. Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 765–771

    Article  Google Scholar 

  57. Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers. Optics Letters, 2002, 27(11): 924–926

    Article  Google Scholar 

  58. Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537–1540

    Article  Google Scholar 

  59. Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A K, Knight J C, Russell P St J. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. Optics Express, 2003, 11(24): 3196–3201

    Article  Google Scholar 

  60. Prabhu M, Taniguchi A, Hirose S, Lu J, Musha M, Shirakawa A, Ueda K. Supercontinuum generation using Raman fiber laser. Applied Physics. B, Lasers and Optics, 2003, 77(2–3): 205–210

    Article  Google Scholar 

  61. Abeeluck A K, Headley C, Jørgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Optics Letters, 2004, 29(18): 2163–2165

    Article  Google Scholar 

  62. Avdokhin A V, Popov S V, Taylor J R. Continuous-wave, highpower, Raman continuum generation in holey fibers. Optics Letters, 2003, 28(15): 1353–1355

    Article  Google Scholar 

  63. Abeeluck A K, Headley C. Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Optics Letters, 2005, 30(1): 61–63

    Article  Google Scholar 

  64. Agrawal G P. Application of Nonlinear Fiber Optics, New York: Academic Press, 2008

    Google Scholar 

  65. Kano H, Hamaguchi H. Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2006, 37(1–3): 411–415

    Article  Google Scholar 

  66. Nagahara T, Imura K, Okamoto H. Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber. Review of Scientific Instruments, 2004, 75(11): 4528

    Article  Google Scholar 

  67. Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 2001, 26(9): 608–610

    Article  Google Scholar 

  68. Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters, 2000, 84(22): 5102–5105

    Article  Google Scholar 

  69. Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J, Russell P St J. Optical frequency synthesizer for precision spectroscopy. Physical Review Letters, 2000, 85(11): 2264–2267

    Article  Google Scholar 

  70. Takara H, Ohara T, Sato K. Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Electronics Letters, 2003, 39(14): 1078

    Article  Google Scholar 

  71. Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15 (12): 1689–1691

    Article  Google Scholar 

  72. Monro T M, Richardson D J, Bennett P J. Developing holey fibres for evanescent field devices. Electronics Letters, 1999, 35(14): 1188

    Article  Google Scholar 

  73. Stewart G, Norris J, Clark D F, Culshaw B. Evanescent-wave chemical sensors-a theoretical evaluation. International Journal of Optoelectronics, 1991, 6(3): 227–238

    Google Scholar 

  74. Stewart G, Jin W, Culshaw B. Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared. Sensors and Actuators. B, Chemical, 1997, 38(1–3): 42–47

    Google Scholar 

  75. Ho H L, Hoo Y L, Jin W, Ju J, Wang D N, Windeler R S, Li Q. Optimizing microstructured optical fibers for evanescent wave gas sensing. Sensors and Actuators. B, Chemical, 2007, 122(1): 289–294

    Article  Google Scholar 

  76. Cussler E L. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University, 1997

    Google Scholar 

  77. Smith C M, Venkataraman N, Gallagher M T, Müller D, West J A, Borrelli N F, Allan D C, Koch K W. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 2003, 424(6949): 657–659

    Article  Google Scholar 

  78. Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C, St J, Russell P. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, 13(1): 236–244

    Article  Google Scholar 

  79. Amezcua-Correa R, Broderick N G R, Petrovich M N, Poletti F, Richardson D J. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Optics Express, 2007, 15(26): 17577–17586

    Article  Google Scholar 

  80. Chen X, Li M J, Venkataraman N, Gallagher M T, Wood W A, Crowley A M, Carberry J P, Zenteno L A, Koch K W. Highly birefringent hollow-core photonic bandgap fiber. Optics Express, 2004, 12(16): 3888–3893

    Article  Google Scholar 

  81. Benabid F, Couny F, Knight J C, Birks T A, Russell P St J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 2005, 434(7032): 488–491

    Article  Google Scholar 

  82. Thapa R, Knabe K, Corwin K L, Washburn B R. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Optics Express, 2006, 14(21): 9576–9583

    Article  Google Scholar 

  83. Hensley C J, Broaddus D H, Schaffer C B, Gaeta A L. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Optics Express, 2007, 15(11): 6690–6695

    Article  Google Scholar 

  84. Hoo Y L, Jin W, Ho H L, Ju J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical, 2005, 105(2): 183–186

    Article  Google Scholar 

  85. Kornaszewski L W, Gayraud N, Stone J M, Macpherson W N, George A K, Knight J C, Hand D P, Reid D T. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Optics Express, 2007, 15(18): 11219–11224

    Article  Google Scholar 

  86. Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber. Optics Express, 2008, 16(6): 3976–3985

    Article  Google Scholar 

  87. Benabid F, Knight J C, Antonopoulos G, Russell P, St J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399–402

    Article  Google Scholar 

  88. Henningsen J, Hald J, Peterson J C. Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers. Optics Express, 2005, 13(26): 10475–10482

    Article  Google Scholar 

  89. Benabid F, Light P S, Couny F, Russell P, St J. Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Optics Express, 2005, 13(15): 5694–5703

    Article  Google Scholar 

  90. Fini J M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology, 2004, 15(6): 1120–1128

    Article  Google Scholar 

  91. De Matos C J S, Cordeiro C M B, Dos Santos E M, Ong J S K, Bozolan A, Brito Cruz C H. Liquid-core, liquid-cladding photonic crystal fibers. Optics Express, 2007, 15(18): 11207–11212

    Article  Google Scholar 

  92. Xiao L, Jin W, Demokan M S, Ho H L, Hoo Y L, Zhao C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Optics Express, 2005, 13(22): 9014–9022

    Article  Google Scholar 

  93. Han Y, Oo M K K, Zhu Y N, Xiao L M, Demohan M S, Jin W, Du H. Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering. Optical Engineering (Redondo Beach, Calif.), 2008, 47(4): 040502

    Google Scholar 

  94. Xuan H F, Jin W, Ju J, Ho H L, Zhang M, Liao Y B. Low-contrast photonic bandgap fibers and their potential applications in liquidbase sensors. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6619: 36

    Google Scholar 

  95. Xiao L M, Jin W, Demokan M S. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Optics Express, 2007, 15(24): 15637–15647

    Article  Google Scholar 

  96. Wang Y P, Tan X L, Jin W, Liu S J, Ying D Q, Hoo Y L. Improved bending property of half-filled photonic crystal fiber. Optics Express, 2010, 18(12): 12197–12202

    Article  Google Scholar 

  97. Wang Y P, Tan X L, Jin W, Ying D Q, Hoo Y L, Liu S J. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Optics Letters, 2010, 35 (1): 88–90

    Article  Google Scholar 

  98. Terrel M, Digonnet M J F, Fan S. Polarization controller for hollow-core fiber. Optics Letters, 2007, 32(11): 1524–1526

    Article  Google Scholar 

  99. Pang M, Jin W. A hollow-core photonic bandgap fiber polarization controller. Optics Letters, 2011, 36(1): 16–18

    Article  Google Scholar 

  100. Ozcan A, Tewary A, Digonnet M J F, Kino G S. Observation of mode coupling in bitapered air-core photonic bandgap fibers. Optics Communications, 2007, 271(2): 391–395

    Article  Google Scholar 

  101. Wang Y P, Jin W, Ju J, Xuan H F, Ho H L, Xiao L M, Wang D N. Long period gratings in air-core photonic bandgap fibers. Optics Express, 2008, 16(4): 2784–2790

    Article  Google Scholar 

  102. Jin L, Jin W, Ju J, Wang Y P. Investigation of long-period grating resonances in hollow-core photonic bandgap fibers. Journal of Lightwave Technology, 2011, 29(11): 1708–1714

    Article  Google Scholar 

  103. Xuan H F, Jin W, Ju J, Wang Y P, Zhang M, Liao Y B, Chen M H. Hollow-core photonic bandgap fiber polarizer. Optics Letters, 2008, 33(8): 845–847

    Article  Google Scholar 

  104. Hoo Y L, Jin W, Ho H L, Ji J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical, 2005, 105(2): 183–186

    Article  Google Scholar 

  105. Hoo Y L, Liu S J, Ho H L, Jin W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonics Technology Letters, 2010, 22(5): 296–298

    Article  Google Scholar 

  106. Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber. Optics Express, 2009, 17(13): 11088–11097

    Article  Google Scholar 

  107. Xiao L, Demokan M S, Jin W, Wang Y, Zhao C L. Fusion splicing photonic crystal fibers and conventional single-mode Fibers: microhole collapse effect. Journal of Lightwave Technology, 2007, 25(11): 3563–3574

    Article  Google Scholar 

  108. Xiao L, Jin W, Demokan MS. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges. Optics Letters, 2007, 32(2): 115–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W., Ju, J., Ho, H.L. et al. Photonic crystal fibers, devices, and applications. Front. Optoelectron. 6, 3–24 (2013). https://doi.org/10.1007/s12200-012-0301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0301-y

Keywords

Navigation