Skip to main content
Log in

Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Recently, air plasma, produced by focusing an intense laser beam to ionize atoms or molecules, has been demonstrated to be a promising source of broadband terahertz waves. However, simultaneous broadband and coherent detection of such broadband terahertz waves is still challenging. Electro-optical sampling and photoconductive antennas are the typical approaches for terahertz wave detection. The bandwidth of these detection methods is limited by the phonon resonance or carrier’s lifetime. Unlike solid-state detectors, gaseous sensors have several unique features, such as no phonon resonance, less dispersion, no Fabry-Perot effect, and a continuous renewable nature. The aim of this article is to review the development of a broadband terahertz time-domain spectrometer, which has both a gaseous emitter and sensor mainly based on author’s recent investigation. This spectrometer features high efficiency, perceptive sensitivity, broad bandwidth, adequate signal-to-noise ratio, sufficient dynamic range, and controllable polarization.

The detection of terahertz waves with ambient air has been realized through a third order nonlinear optical process: detecting the second harmonic photon that is produced by mixing one terahertz photon with two fundamental photons. In this review, a systematic investigation of the mechanism of broadband terahertz wave detection was presented first. The dependence of the detection efficiency on probe pulse energy, bias field strength, gas pressure and third order nonlinear susceptibility of gases were experimentally demonstrated with selected gases. Detailed discussions of phase matching and Gouy phase shift were presented by considering the focused condition of Gaussian beams. Furthermore, the bandwidth dependence on probe pulse duration was also demonstrated. Over 240 times enhancement of dynamic range had been accomplished with n-hexane vapor compared to conventional air sensor. Moreover, with sub-20 fs laser pulses delivered from a hollow fiber pulse compressor, an ultra-broad spectrum covering from 0.3 to 70 THz was also showed.

In addition, a balanced detection scheme using a polarization dependent geometry was developed by author to improve signal-to-noise ratio and dynamic range of conventional terahertz air-biased-coherent-detection (ABCD) systems. Utilizing the tensor property of third order nonlinear susceptibility, second harmonic pulses with two orthogonal polarizations was detected by two separated photomultiplier tubes (PMTs). The differential signal from these two PMTs offers a realistic method to reduce correlated laser fluctuation, which circumvents signal-to-noise ratio and dynamic range of conventional terahertz ABCD systems. A factor of two improvement of signal-to-noise ratio was experimentally demonstrated.

This paper also introduces a unique approach to directly produce a broadband elliptically polarized terahertz wave from laser-induced plasma with a pair of double helix electrodes. The theoretical and experimental results demonstrated that velocity mismatch between excitation laser pulses and generated terahertz waves plays a key role in the properties of the elliptically polarized terahertz waves and confirmed that the far-field terahertz emission pattern is associated with a coherent process. The results give insight into the important influence of propagation effects on terahertz wave polarization control and complete the mechanism of terahertz wave generation from laserinduced plasma.

This review provides a critical understanding of broadband terahertz time-domain spectroscopy (THz-TDS) and introduces further guidance for scientific applications of terahertz wave gas photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

    Google Scholar 

  2. Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928

    Google Scholar 

  3. Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

    Google Scholar 

  4. Nuss M, Orenstein J. Terahertz time-domain spectroscopy. In: Grüner G, ed. Millimeter and Submillimeter Wave Spectroscopy of Solids. Berlin/Heidelberg: Springer, 1998, 7–50

    Google Scholar 

  5. Grischkowsky D, Keiding S, Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America. B, Optical Physics, 1990, 7(10): 2006–2015

    Google Scholar 

  6. Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130

    Google Scholar 

  7. Yeh K L, Hoffmann MC, Hebling J, Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121

    Google Scholar 

  8. You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292

    Google Scholar 

  9. Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T. Generation of single-cycle THz transients with high electric-field amplitudes. Optics Letters, 2005, 30(20): 2805–2807

    Google Scholar 

  10. Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

    Google Scholar 

  11. Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769

    Google Scholar 

  12. Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Physical Review Letters, 2003, 91(23): 237401

    Google Scholar 

  13. Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R, Ploog K H. Nonlinear terahertz response of -type GaAs. Physical Review Letters, 2006, 96(18): 187402

    Google Scholar 

  14. Danielson J R, Lee Y S, Prineas J P, Steiner J T, Kira M, Koch S W. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Physical Review Letters, 2007, 99(23): 237401

    Google Scholar 

  15. Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Physical Review Letters, 2007, 99(4): 043901

    Google Scholar 

  16. Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629

    Google Scholar 

  17. Jewariya M, Nagai M, Tanaka K. Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse. Physical Review Letters, 2010, 105(20): 203003

    Google Scholar 

  18. Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Coherent ballistic motion of electrons in a periodic potential. Physical Review Letters, 2010, 104(14): 146602

    Google Scholar 

  19. Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34

    Google Scholar 

  20. Leinß S, Kampfrath T, Volkmann K, Wolf M, Steiner J T, Kira M, Koch SW, Leitenstorfer A, Huber R. Terahertz coherent control of optically dark paraexcitons in Cu2O. Physical Review Letters, 2008, 101(24): 246401

    Google Scholar 

  21. Huber R, Tauser F, Brodschelm A, Bichler M, Abstreiter G, Leitenstorfer A. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature, 2001, 414(6861): 286–289

    Google Scholar 

  22. Kaindl R A, Carnahan M A, Hägele D, Lövenich R, Chemla D S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 2003, 423(6941): 734–738

    Google Scholar 

  23. Günter G, Anappara A A, Hees J, Sell A, Biasiol G, Sorba L, De Liberato S, Ciuti C, Tredicucci A, Leitenstorfer A, Huber R. Subcycle switch-on of ultrastrong light-matter interaction. Nature, 2009, 458(7235): 178–181

    Google Scholar 

  24. Hu B B, Zhang X C, Auston D H, Smith P R. Free-space radiation from electrooptic crystals. Applied Physics Letters, 1990, 56(6): 506–508

    Google Scholar 

  25. Han P Y, Zhang X C. Free-space coherent broadband terahertz time-domain spectroscopy. Measurement Science & Technology, 2001, 12(11): 1747–1756

    Google Scholar 

  26. Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters, 2000, 76(22): 3191–3193

    Google Scholar 

  27. Kübler C, Huber R, Tubel S, Leitenstorfer A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362

    Google Scholar 

  28. Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103 doi:10.1063/1.88079

    Google Scholar 

  29. Mourou G, Stancampiano C V, Antonetti A, Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Applied Physics Letters, 1981, 39(4): 295–296

    Google Scholar 

  30. Fattinger C, Grischkowsky D. Point source terahertz optics. Applied Physics Letters, 1988, 53(16): 1480–1482

    Google Scholar 

  31. Krökel D, Grischkowsky D, Ketchen M B. Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes. Applied Physics Letters, 1989, 54(11): 1046–1047

    Google Scholar 

  32. Shen Y C, Upadhya P C, Linfield E H, Beere H E, Davies A G. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Applied Physics Letters, 2003, 83(15): 3117–3119

    Google Scholar 

  33. Fill E, Borgström S, Larsson J, Starczewski T, Wahlström C G, Svanberg S. XUV spectra of optical-field-ionized plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(6): 6016–6027

    Google Scholar 

  34. Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

    Google Scholar 

  35. Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A. Radiofrequency conical emission from femtosecond filaments in air. Applied Physics Letters, 2010, 96(14): 141111

    Google Scholar 

  36. Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

    Google Scholar 

  37. Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182

    Google Scholar 

  38. Wu Q, Zhang X C. Free-space electro-optics sampling of midinfrared pulses. Applied Physics Letters, 1997, 71(10): 1285–1286

    Google Scholar 

  39. Jepsen P U, Winnewisser C, Schall M, Schyja V, Keiding S R, Helm H. Detection of THz pulses by phase retardation in lithium tantalate. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53(4): R3052–R3054

    Google Scholar 

  40. Nahata A, Auston D H, Heinz T F, Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Applied Physics Letters, 1996, 68(2): 150–152

    Google Scholar 

  41. Vagelatos N, Wehe D, King J S. Phonon dispersion and phonon densities of states for ZnS and ZnTe. Journal of Chemical Physics, 1974, 60(9): 3613–3618

    Google Scholar 

  42. Kleinman D A, Spitzer W G. Infrared lattice absorption of GaP. Physical Review, 1960, 118(1): 110–117

    Google Scholar 

  43. Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276–3278

    Google Scholar 

  44. Prabhu S S, Ralph S E, Melloch M R, Harmon E S. Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy. Applied Physics Letters, 1997, 70(18): 2419–2421

    Google Scholar 

  45. Kono S, Tani M, Sakai K. Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna. Iee P-Optoelectron, 2002, 149(3): 105–109

    Google Scholar 

  46. Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002

    Google Scholar 

  47. Liu J, Zhang X C. Plasma characterization using terahertz-waveenhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505

    Google Scholar 

  48. Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631

    Google Scholar 

  49. Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546

    Google Scholar 

  50. Liu J, Clough B, Zhang X C. Enhancement of photoacoustic emission through terahertz-field-driven electron motions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(6 Pt 2): 066602

    Google Scholar 

  51. Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

    Google Scholar 

  52. Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131

    Google Scholar 

  53. Nahata A, Heinz T F. Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. Optics Letters, 1998, 23(1): 67–69

    Google Scholar 

  54. Cook D J, Chen J X, Morlino E A, Hochstrasser R M. Terahertz-field-induced second-harmonic generation measurements of liquid dynamics. Chemical Physics Letters, 1999, 309(3–4): 221–228

    Google Scholar 

  55. Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(9): A66–A73

    Google Scholar 

  56. Lu X, Zhang X C. Terahertz wave gas photonics: sensing with gases. Journal of Infrared, Millimeter and Terahertz Waves, 2011, 32(5): 562–569

    Google Scholar 

  57. Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106

    Google Scholar 

  58. Kleinman D A, Ashkin A, Boyd G D. Second-harmonic generation of light by focused laser beams. Physical Review, 1966, 145(1): 338

    Google Scholar 

  59. Ward J F, New G H C. Optical third harmonic generation in gases by a focused laser beam. Physical Review, 1969, 185(1): 57

    Google Scholar 

  60. Karpowics N. Physics and utilization of terahertz gas photonics. In: Physics. Rensselaer Polytechnic Institute, Troy, NY, 2009, 124

    Google Scholar 

  61. Finn R S, Ward J F. DC-induced optical second-harmonic generation in the inert gases. Physical Review Letters, 1971, 26: 285–289

    Google Scholar 

  62. Becker A, Akozbek N, Vijayalakshmi K, Oral E, Bowden C M, Chin S L. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Applied Physics. B, Lasers and Optics, 2001, 73(3): 287–290

    Google Scholar 

  63. Shelton D P. Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm. Physical Review A, 1990, 42(5): 2578–2592 PMID:9904326

    Google Scholar 

  64. Boyd R W. Nonlinear Optics. Burlington, MA: Academic Press, 2008

    Google Scholar 

  65. Hermann J P, Ducuing J. Third-order polarizabilities of long-chain molecules. Journal of Applied Physics, 1974, 45(11): 5100–5102

    Google Scholar 

  66. Rustagi K C, Ducuing J. Third-order optical polarizability of conjugated organic-molecules. Optics Communications, 1974, 10(3): 258–261

    Google Scholar 

  67. Korff S, Breit G. Optical dispersion. Reviews of Modern Physics, 1932, 4(3): 471–503

    Google Scholar 

  68. Gouy L G. Sur la propagation anomale des ondes. Compt. Rendue Acad. Sci. Paris, 1890, 111: 33

    Google Scholar 

  69. Gouy L G. Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris, 1890, 110: 1251

    Google Scholar 

  70. Ruffin A B, Rudd J V, Whitaker J F, Feng S, Winful H G. Direct observation of the Gouy phase shift with single-cycle terahertz pulses. Physical Review Letters, 1999, 83(17): 3410–3413

    Google Scholar 

  71. Lide D R, ed. CRC Handbook of Chemistry and Physics. 86th ed. Boca Raton: CRC-Press, 2005

    Google Scholar 

  72. Wu Q, Zhang X C. Free-space electro-optics sampling of midinfrared pulses. Applied Physics Letters, 1997, 71(10): 1285–1286

    Google Scholar 

  73. Naftaly M, Dudley R. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Optics Letters, 2009, 34(8): 1213–1215

    Google Scholar 

  74. Bigio I J, Ward J F. Measurement of the hyperpolarizability ratio χ yyyy(− 2ω; 0, ω, ω)/χ yyxx(− 2ω; 0, ω, ω) for the inert gases. Physical Review A, 1974, 9(1): 35–39

    Google Scholar 

  75. Ward J F, Bigio I J. Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases. Physical Review A, 1975, 11(1): 60–66

    Google Scholar 

  76. Ward J F, Miller C K. Measurements of nonlinear optical polarizabilities for twelve small molecules. Physical Review A, 1979, 19(2): 826–833

    Google Scholar 

  77. Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005

    Google Scholar 

  78. Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

    Google Scholar 

  79. Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609

    Google Scholar 

  80. Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001

    Google Scholar 

  81. Silaev A A, Vvedenskii N V. Residual-current excitation in plasmas produced by few-cycle laser pulses. Physical Review Letters, 2009, 102(11): 115005

    Google Scholar 

  82. Kreß M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331

    Google Scholar 

  83. Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288(5466): 635–639

    Google Scholar 

  84. Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, De Silvestri S. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature, 2001, 414(6860): 182–184

    Google Scholar 

  85. Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photonics, 2010, 4(12): 875–879

    Google Scholar 

  86. Paul PM, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P. Observation of a train of attosecond pulses from high harmonic generation. Science, 2001, 292(5522): 1689–1692

    Google Scholar 

  87. Strickland D, Mourou G. Compression of amplified chirped optical pulses. Optics Communications, 1985, 56(3): 219–221

    Google Scholar 

  88. Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique. Applied Physics Letters, 1996, 68(20): 2793–2795

    Google Scholar 

  89. Nisoli M, De Silvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S, Krausz F. Compression of high-energy laser pulses below 5 fs. Optics Letters, 1997, 22(8): 522–524

    Google Scholar 

  90. Matsubara E, Yamane K, Sekikawa T, Yamashita M. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. Journal of the Optical Society of America. B, Optical Physics, 2007, 24(4): 985–989

    Google Scholar 

  91. Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J, Keller U. Generation of intense, carrierenvelope phase-locked few-cycle laser pulses through filamentation. Applied Physics. B, Lasers and Optics, 2004, 79(6): 673–677

    Google Scholar 

  92. Couairon A, Franco M, Mysyrowicz A, Biegert J, Keller U. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Optics Letters, 2005, 30(19): 2657–2659

    Google Scholar 

  93. Kane D J, Trebino R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Optics Letters, 1993, 18(10): 823–825

    Google Scholar 

  94. Johnson F A. Lattice absorption bands in silicon. Proceedings of the Physical Society, London, 1959, 73(2): 265–272

    Google Scholar 

  95. Shan J, Dadap J I, Heinz T F. Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization. Optics Express, 2009, 17(9): 7431–7439

    Google Scholar 

  96. Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455

    Google Scholar 

  97. Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photonics Rev, 2007, 1(4): 349–368

    Google Scholar 

  98. Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Physical Review Letters, 2008, 100(25): 255006

    Google Scholar 

  99. Blanchard F, Sharma G, Ropagnol X, Razzari L, Morandotti R, Ozaki T. Improved terahertz two-color plasma sources pumped by high intensity laser beam. Optics Express, 2009, 17(8): 6044–6052

    Google Scholar 

  100. Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903

    Google Scholar 

  101. Liu Y, Houard A, Prade B, Mysyrowicz A, Diaw A, Tikhonchuk V T. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Applied Physics Letters, 2008, 93(5): 051108

    Google Scholar 

  102. Chen Y P, Wang T J, Marceau C, Théberge F, Châteauneuf M, Dubois J, Kosareva O, Chin S L. Characterization of terahertz emission from a dc-biased filament in air. Applied Physics Letters, 2009, 95: 101101

    Google Scholar 

  103. Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001

    Google Scholar 

  104. Wen H D, Lindenberg AM. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Cheng Zhang.

Additional information

Xiaofei Lu -Physicist at SunEdison Inc, Saint Peters, MO. She received her Ph.D. in Physics from Rensselaer Polytechnic Institute (RPI), Troy, NY, where she involved in terahertz science and technology under Prof. Xi-Cheng Zhang’s guidance. Prior to RPI, she received her B.S. in optoelectronics from Tianjin University, Tianjin, China. In Rensselaer, she contributed to development of broadband terahertz time-domain spectroscope with gases. She authored or co-authored more than ten journal publications and her work was presented in major conferences. She was awarded as a National Science Foundation IGERT Trainee since 2009. She was given the Coherent Award for Outstanding Research Achievement in 2009 and the Rensselaer Founders’ Award for Excellence in 2008.

Xi-Cheng Zhang-Parker Givens Chair of Optics, assumes Directorship of The Institute of Optics, University of Rochester (UR), NY, a foremost institution in optics and optical physics research and education, on 1/1/2012. Prior to joining UR, he pioneered world-leading research in the field of ultrafast laser-based terahertz technology and optical physics at Rensselaer Polytechnic Institute (RPI), Troy, NY (1992–2012). At RPI, he is the Eric Jonsson Professor of Science; Acting Head at the Department of Physics, Applied Physics & Astronomy; Professor of Electrical, Computer & System; and Founding Director of the Center for THz Research. He is co-founder of Zomega Terahertz Corp. With a B.S. (1982) from Peking University, he earned the M.S. (1983) and Ph.D. degree (1985) in Physics from Brown University, RI.

Previous positions included Visiting Scientist at MIT (1985), Physical Tech. Division of Amoco Research Center (1987), EE Dept. at Columbia University (1987–1991); Distinguished Visiting Scientist at Jet Propulsion Lab, Caltech (2006). He holds 27 U.S. patents, and is a prolific author and speaker. He is a Fellow of AAAS, APS (lifetime), IEEE, and OSA (lifetime). Dr. Zhang served as Editor-in-Chief of Optics Letters (2014–2016).

His honors and awards include: IRMMW-THz Kenneth Button Prize (2014); OSA William F. Meggers Award (2012); IEEE Photonics Society William Streifer Scientific Achievement Award (2011); Rensselaer William H. Wiley 1866 Award (2009); Japan Society for the Promotion of Science Fellowship & NRC-CIAR Distinguished Visiting Scientist, Ottawa, Canada (2004); and First Heinrich Rudolf Hertz Lecturer, RWTH, Aachen, Germany (2003). He also served two years as a Distinguished Lecturer of IEEE/LEOS. He received Rensselaer Early Career Award (1996), Research Corporation Cottrell Scholar Award (1995), NSF Early Career Award (1995), K.C. Wong Prize, K.C. Wong Foundation, Hong Kong (1995), NSF Research Initiation Award (1992). In 1993–1994, he was an AFOSR-SRPF Fellow at Hanscom Air Force Base.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Zhang, XC. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics. Front. Optoelectron. 7, 121–155 (2014). https://doi.org/10.1007/s12200-013-0371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0371-5

Keywords

Navigation