Skip to main content
Log in

Nonlinear neural-based modeling of soil cohesion intercept

  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

A new model was derived to estimate undrained cohesion intercept (c) of soil using Multilayer Perceptron (MLP) of artificial neural networks. The proposed model relates c to the basic soil physical properties including coarse and fine-grained contents, grains size characteristics, liquid limit, moisture content, and soil dry density. The experimental database used for developing the model was established upon a series of unconsolidated-undrained triaxial tests conducted in this study. A Nonlinear Least Squares Regression (NLSR) analysis was performed to benchmark the proposed model. The contributions of the parameters affecting c were evaluated through a sensitivity analysis. The results indicate that the developed model is effectively capable of estimating the c values for a number of soil samples. The MLP model provides a significantly better prediction performance than the regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alavi, A. H., Gandomi, A. H., Mollahasani, A., Heshmati, A. A. R., and Rashed, A. (2010). “Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks.” J. Plant. Nutr. Soil. Sci., Vol. 173, No. 3, pp. 368–379.

    Article  Google Scholar 

  • Alavi, A. H., Gandomi, A. H., Gandomi, M., and Sadat Hosseini, S. S. (2009). “Prediction of maximum dry density and optimum moisture content of stabilized soil using RBF neural networks.” The IES J. Part A. Civ. Struct. Eng., Vol. 2, No. 2, pp. 98–106.

    Article  Google Scholar 

  • Al-Shayea, N. A. (2001). “The combined effect of clay and moisture content on the behavior of remolded unsaturated soils.” Eng. Geol., Vol. 62, No. 4, pp. 319–342.

    Article  Google Scholar 

  • ASTM D2850-87. (1987). Standard test method for unconsolidated, undrained compressive strength of cohesive soils in triaxial compression.

  • Bhattacharjya, R. K., Datta, B., and Satish, M. G. (2009). “Performance of an artificial neural network model for simulating saltwater intrusion process in coastal aquifers when training with noisy data.” KSCE J. Civ. Eng., Vol. 13, No. 3, pp. 205–215.

    Article  Google Scholar 

  • Cybenko, J. (1989). “Approximations by superpositions of a sigmoidal function.” Math. Cont. Sign. Syst., Vol. 2, pp. 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunlop, P. and Smith, S. (2003). “Estimating key characteristics of the concrete delivery and placement process using linear regression analysis.” Civil Eng. Environ. Syst., Vol. 20, pp. 273–290.

    Article  Google Scholar 

  • Eberhart, R. C. and Dobbins, R. W. (1990). Neural network PC tools, A Practical Guide, Academic Press, San Diego, C.A.

    Google Scholar 

  • El-Maksoud, M. A. F. (2006). “Laboratory determining of soil strength parameters in calcareous soils and their effect on chiseling draft prediction.” Proc. Energy Efficiency and Agricultural Engineering Int. Conf., Rousse, Bulgaria.

  • Frank, I. E. and Todeschini, R. (1994). “The data analysis handbook.” Elsevier, Amsterdam, The Nederland.

    Google Scholar 

  • Garson, G. D. (1991). “Interpreting neural-network connection weights.” AI Expert, Vol. 6, No. 7, pp. 47–51.

    Google Scholar 

  • Guzelbey, I. H., Cevik, A., and Gogus, M. T. (2006). “Prediction of rotation capacity of wide flange beams using neural networks.” J. Constr. Steel Res., Vol. 62, No. 10, pp. 950–961.

    Article  Google Scholar 

  • Hashash, M. A. and Song, H. (2008). “The integration of numerical modeling and physical measurements through inverse analysis in geotechnical engineering.” KSCE J. Civ. Eng., Vol. 12, No. 3, pp. 165–176.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks — A comprehensive foundation, 2nd Ed., Prentice Hall Inc., Englewood Cliffs.

    MATH  Google Scholar 

  • Hecht-Nielson, R. (1990). “Neurocomputing.” Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Heshmati, A. A. R., Alavi, A. H., Keramati, M., and Gandomi, A. H. (2009). “A radial basis function neural network approach for compressive strength prediction of stabilized soil.” Geotech. Spec. Pub. ASCE., Vol. 191, pp. 147–153.

    Google Scholar 

  • Kasabov, N. K. (1998). Foundations of neural networks fuzzy systems and knowledge engineering, MIT Press, Cambridge.

    Google Scholar 

  • Kayadelen, C., Günaydýn, O., Fener, M., Demir, A., and Özvan, A. (2009). “Modeling of the angle of shearing resistance of soils using soft computing systems.” Expert Syst. Appl., Vol. 36, pp. 11814–11826.

    Article  Google Scholar 

  • Kim, B. T., Kim, Y. S., and Lee, S. H. (2008). “Prediction of lateral behavior of single and group piles using artificial neural networks.” KSCE J. Civ. Eng., Vol. 5, No. 2, pp. 185–198.

    Article  Google Scholar 

  • Korayem, A. Y., Ismail, K. M., and Sehari, S. Q. (1996). “Prediction of soil shear strength and penetration resistance using some soil properties.” Mis. J. Agr. Res., Vol. 13, No. 4, pp. 119–140.

    Google Scholar 

  • Maravall, A. and Gomez, V. (2004). Eviews software, Version 5, Quantitative Micro Software, LLC, Irvine C.A.

    Google Scholar 

  • MathWorks (2007). Inc. MATLAB the language of technical computing, Version 7.4, Natick, MA, U.S.A.

  • Mayne, P. W. (2001). “Stress-strain-strength-flow parameters from enhanced in-situ tests.” Proc., In-Situ Measurement of Soil Properties & Case Histories, Bali, Indonesia, pp. 27–48.

  • Mesbahi, E. (2000). Application of artificial neural networks in modelling and control of diesel engines, PhD Thesis, University of Newcastle, U.K.

  • Murthy, S. (2008). Geotechnical engineering. principles and practices of soil mechanics, 2nd Edition, Taylor & Francis, CRC Press, U.K.

    Google Scholar 

  • Pan, Y., Jiang, J., Wang, R., Cao, H., and Cui, Y. (2009). “A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine.” J. Haz. Mater., Vol. 168, Nos. 2–3, pp. 962–969.

    Article  Google Scholar 

  • Panwar, J. S. and Seimens, J. C. (1972). “Shear strength and energy of soil failure related to density and moisture.” T. ASAE, Vol. 15, pp. 423–427.

    Google Scholar 

  • Perlovsky, L. I. (2001). Neural networks and intellect, Oxford University Press.

  • Poulos, S. J. (1989). “Liquefaction related phenomena.” Advance Dam Engineering for Design, Construction, and Rehabilitation, Van Nostrand Reinhold, pp. 292–297.

  • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal representations by error propagation.” Proc., Parallel Distributed Processing, MIT Press, Cambridge.

    Google Scholar 

  • Ryan, T. P. (1997). Modern regression methods, Wiley, New York, N.Y.

    MATH  Google Scholar 

  • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2001). “Artificial neural network applications in geotechnical engineering.” Aus. Geomech. Vol. 36, No. 1, pp. 49–62.

    Google Scholar 

  • Smith, G. N. (1986). Probability and statistics in civil engineering, Collins, London.

    Google Scholar 

  • Swingler, K. (1996). Applying neural networks a practical guide, Academic Press, New York, N.Y.

    Google Scholar 

  • Tapkýn, S., Cevik, A., and Usar, Ü. (2009). “Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks.” Exp. Syst. Appl., Vol. 36, pp. 11186–11197.

    Article  Google Scholar 

  • Terzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice, 2nd Ed., Wiley & Sons, Inc., New York, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Alavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollahasani, A., Alavi, A.H., Gandomi, A.H. et al. Nonlinear neural-based modeling of soil cohesion intercept. KSCE J Civ Eng 15, 831–840 (2011). https://doi.org/10.1007/s12205-011-1154-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-011-1154-4

Keywords

Navigation