Skip to main content
Log in

Optimal design of labyrinth spillways using meta-heuristic algorithms

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The labyrinth spillway continues to be a popular type of the control structures. The focus of the present study is that on the optimization of the shape of the labyrinth spillway through the minimization of the construction costs because the use of it is a suitable solution in the rehabilitation process of existing reservoirs. An Adaptive Neural Fuzzy Inference System (ANFIS) model was developed to determine the discharge coefficient of the labyrinth spillway as a function of the angle between alignment of the crest and direction of flow, the relative depth of flow over spillway and its crest height. Differential Evolution (DE) algorithm and Genetic Algorithm (GA) were adopted to minimize the spillway cost as the objective function by considering certain hydraulic conditions as the constraints of the optimization procedure. The results indicated that DE and GA can respectively reduce 19.3% and 16.6% the construction cost of a real benchmark design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanian, N. (1995). Performance and design of labyrinth spillway, Utah State University, Logan, Utah.

    Google Scholar 

  • Aydin, M. C. (2012). “CFD simulation of free-surface flow over triangular labyrinth side weir.” Advances in Engineering Software, Vol. 45, No. 1, pp. 159–166, DOI: 10.1016/j.advengsoft.2011.09.006.

    Article  Google Scholar 

  • Aydin, M. C. and Emiroglu, M. E. (2013). “Determination of capacity of labyrinth side weir by CFD.” Flow Measurement and Instrumentation, Vol. 29, pp. 1–8, DOI: 10.1016/j.flowmeasinst.2012.09.008.

    Article  Google Scholar 

  • Azamathulla, H. (2014). “Discussion of “Orifice spillway aerator: Hydraulic design” by V. V. Bhosekar, V. Jothiprakash, and P. B. Deolalikar.” Journal of Hydraulic Engineering, Vol. 141, No. 1, 07014016-1, DOI: 10.1061/(ASCE)HY.1943-7900.0000932.

    Google Scholar 

  • Azamathulla, H. M. and Ahmad, Z. (2013). “Estimation of critical velocity for slurry transport through pipeline using adaptive neurofuzzy interference system and gene-expression programming.” Journal of Pipeline Systems Engineering and Practice, Vol. 4, No. 2, pp. 131–137, DOI: 10.1061/(ASCE)PS.1949-1204.0000123.

    Article  Google Scholar 

  • Azamathulla, H. and Ahmad, Z. (2014). “Closure to “Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming” by H. Md. Azamathulla and Z. Ahmad.” Journal of Pipeline Systems Engineering and Practice, DOI: 10.1061/(ASCE)PS.1949-1204.0000192 (In press).

    Google Scholar 

  • Azamathulla, H. M., Deo, M. C., and Deolalikar, P. B. (2005). “Neural networks for estimation of scour downstream of a ski-jump bucket.” Journal of Hydraulic Engineering, Vol. 131, No. 10, pp. 898–908, DOI: 10.1061/(ASCE)0733-9429(2005)131:10(898).

    Article  Google Scholar 

  • Azamathulla, H. M. D., Deo, M. C., and Deolalikar, P. B. (2006). “Estimation of scour below spillways using neural networks.” Journal of Hydraulic Research, Vol. 44, No. 1, pp. 61–69, DOI: 10.1080/00221686.2006.9521661.

    Article  Google Scholar 

  • Azamathulla, H. M., Deo, M. C., and Deolalikar, P. B. (2008). “Alternative neural networks to estimate the scour below spillways.” Advances in Engineering Software, Vol. 39, No. 8, pp. 689–698, DOI: 10.1016/j.advengsoft.2007.07.004.

    Article  Google Scholar 

  • Azamathulla, H. M., Deo, M. C., Bhajantri, M. R., and Deolalikar, P. B. (2004). “Scour at the base of flip-bucket spillways.” ISH Journal of Hydraulic Engineering, Vol. 10, No. 2, pp. 121–129, DOI: 10.1080/09715010.2004.10514759.

    Article  Google Scholar 

  • Barati, R. (2011). “Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm.” Journal of Hydrologic Engineering, Vol. 16, No. 11, pp. 946–954, DOI: 10.1061/(ASCE)HE.1943-5584.0000379.

    Article  Google Scholar 

  • Barati, R. (2013). “Application of excel solver for parameter estimation of the nonlinear Muskingum models.” KSCE Journal of Civil Engineering, Vol. 17, No. 5, pp. 1139–1148, DOI: 10.1007/s12205-013-0037-2.

    Article  Google Scholar 

  • Barati, R., Salehi Neyshabouri, S. A. A., and Ahmadi, G. (2014a). “Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: An evolutionary approach.” Powder Technology, Vol. 257, May 2014, pp. 11–19, DOI: 10.1016/j.powtec.2014.02.045.

    Article  Google Scholar 

  • Barati, R., Salehi Neyshabouri, S. A. A., and Ahmadi, G. (2014b). “Sphere drag revisited using shuffled complex evolution algorithm.” River Flow 2014 — the 7th International Conference on Fluvial Hydraulics — at EPFL, Lausanne, Switzerland.

    Google Scholar 

  • Bilhan, O., Emiroglu, M. E., and Kisi, O. (2011). “Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels.” Advances in Engineering Software, Vol. 42, No. 4, pp. 208–214, DOI: 10.1016/j.advengsoft.2011.02.006.

    Article  Google Scholar 

  • Chang, F. J. and Chang, Y. T. (2006). “Adaptive neuro-fuzzy inference system for prediction of water level in reservoir.” Advances in Water Resources, Vol. 29, No. 1, pp. 1–10, DOI: 10.1016/j.advengsoft.2011.02.006.

    Article  Google Scholar 

  • Crookston, B. M. (2010). Labyrinth weirs, PhD Thesis, Utah State University.

    Google Scholar 

  • Crookston, B. M. and Tullis, B. P. (2012). “Labyrinth weirs: Nappe interference and local submergence.” Journal of Irrigation and Drainage Engineering, Vol. 138, No. 8, pp. 757–765, DOI: 10.1061/(ASCE)IR.1943-4774.0000466.

    Article  Google Scholar 

  • Crookston, B. M. and Tullis, B. P. (2013). “Hydraulic design and analysis of labyrinth weirs. I: Discharge relationships.” Journal of Irrigation and Drainage Engineering, Vol. 139, No. 5, pp. 363–370, DOI:10.1061/(ASCE)IR.1943-4774.0000558.

    Article  Google Scholar 

  • Dabling, M. R., Tullis, B. P., and Crookston, B. M. (2013). “Staged labyrinth weir hydraulics.” Journal of Irrigation and Drainage Engineering, Vol. 139, No. 11, pp. 955–960, DOI: 10.1061/(ASCE)IR.1943-4774.0000558.

    Article  Google Scholar 

  • Darvas, L. A. (1971). “Discussion of Performance and design of labyrinth weirs.” Journal of the Hydraulics Division, Vol. 97, No. 8, pp. 1246–1251.

    Article  Google Scholar 

  • Emiroglu, M. E. and Kisi, O. (2013). “Prediction of discharge coefficient for trapezoidal labyrinth side weir using a neuro-fuzzy approach.” Water Resources Management, Vol. 27, No. 5, pp. 1473–1488, DOI: 10.1007/s11269-012-0249-0.

    Article  Google Scholar 

  • Emiroglu, M. E., Bilhan, O., and Kisi, O. (2011). “Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel.” Expert Systems with Applications, Vol. 38, No. 1, pp. 867–874, DOI: 10.1016/j.eswa.2010.07.058.

    Article  Google Scholar 

  • Emiroglu, M. E., Cihan Aydin, M., and Kaya, N. (2014). “Discharge characteristics of a trapezoidal labyrinth side weir with one and two cycles in subcritical flow.” Journal of Irrigation and Drainage Engineering, Vol. 140, No. 5, 04014007-1-04014007-13, DOI: 10.1061/(ASCE)IR.1943-4774.0000709.

    Google Scholar 

  • Emiroglu, M. E., Kisi, O., and Bilhan, O. (2010). “Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique.” Advances in Engineering Software, Vol. 41, No. 2, pp. 154–160, DOI: 10.1016/j.advengsoft.2009.09.006.

    Article  Google Scholar 

  • Falvay, H. (2003). Hydraulic design of labyrinth weirs, ASCE Press Pub., Virginia, USA.

    Google Scholar 

  • Falvey, H. and Treille, P. (1995). “Hydraulics and design of fusegates.” Journal of Hydraulic Engineering, Vol. 121, No. 7, pp. 512–518, DOI: 10.1061/(ASCE)0733-9429(1995)121:7(512).

    Article  Google Scholar 

  • Ghare, A. D., Mhaisalkar, V. A., and Porey, P. D. (2008). “An approach to optimal design of trapezoidal labyrinth weirs.” World Applied Sciences Journal, Vol. 3, No. 6, pp. 934–938.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning, Addison Wesley, Reading.

    Google Scholar 

  • Haddad, O. B., Mirmomeni, M., and Mariño, M. A. (2010). “Optimal design of stepped spillways using the HBMO algorithm.” Civil Engineering and Environmental Systems, Vol. 27, No. 1, pp. 81–94, DOI: 10.1080/10286600802542465.

    Article  Google Scholar 

  • Hay, N. and Taylor, G. (1970). “Performance and design of labyrinth weirs.” Journal of Hydraulic Engineering, Vol. 96, No. 11, pp. 2337–2357.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, U. Michigan Press.

    Google Scholar 

  • Houston, K. L. (1982). Hydraulic model study of Ute dam labyrinth spillway, Bureau of Reclamation Division of Research Hydraulics Branch, Denver.

    Google Scholar 

  • Indlekofer, H. and Rouve, G. (1975). “Discharge over polygonal weirs.” Journal of the Hydraulics Division, Vol. 101(HY3), pp. 385–401.

    Article  Google Scholar 

  • Jang, J. S. R. (1993). “ANFIS: Adaptive network based fuzzy inference system.” IEEE Trans. on Systems, Man and Cybernetics, Vol. 23, No. 3, pp. 665–683, DOI: 10.1109/21.256541.

    Article  Google Scholar 

  • Jang, J. S. R., Sun, C. T., and Mizutani, E. (1997). Neuro-fuzzy and soft Computing: A computational approach to learning and machine intelligence, Prentice Hall, Upper Saddle River, New Jersey, USA.

    Google Scholar 

  • Kabiri-Samani, A. (2010). “Analytical approach for flow over an oblique weir.” Transaction A: Civil Engineering, Vol. 17, No. 2, pp. 107–117.

    Google Scholar 

  • Khatsuria, R. M. (2004). Hydraulics of spillways and energy dissipators, CRC Press.

    Book  Google Scholar 

  • Khatsuria, R., Deolalikar, P., and Bhosekar, V. (1988). Design of duckbill spillway and reversed sloping curved stilling basin, Salauli Project, 54th R&D Session, CBI&P, Ranchi, India.

    Google Scholar 

  • Khode, B. V. and Tembhurkar, A. R. (2010). “Evaluation and analysis of crest coefficient for labyrinth weir.” World Applied Sciences Journal, Vol. 11, No. 7, pp. 835–839.

    Google Scholar 

  • Laugier, F. (2007). “Design and construction of the first Piano Key Weir (PKW) spillwayat the goulours dam.” Hydropower & Dams, Vol. 13, No. 5, pp. 94–101.

    Google Scholar 

  • Lux, F. L. and Hinchliff, D. (1985). “Design and construction of labyrinth spillways.” Proc. 15 th International Congress on Large Dams, Paris, France, Vol. 4, No. 59, pp. 249–274.

    Google Scholar 

  • Nayak, P., Sudheer, K., Rangan, D., and Ramasa, K. (2004). “A neurofuzzy computing technique for modeling hydrological time series.” Journal of Hydrology, Vol. 291, No. 1, pp. 52–66, DOI: 10.1016/j.jhydrol.2003.12.010.

    Article  Google Scholar 

  • Noori, B. and Chilmeran, T. (2005). “Characteristics of flow over normal and oblique weirs with semicircular crest.” Al-Rafidain Engineering, Vol. 13, No. 1, pp. 49–61.

    Google Scholar 

  • Ouamane, A. and Lempérière, F. (2006). “Design of a new economic shape of weir.” Proceedings of the International Symposium on Dams in the Societies of the 21st Century, Vol. 18, pp. 463–470.

    Google Scholar 

  • Paxson, G., Campbell, D., and Monroe, J. (2011). “Evolving design approaches and considerations for labyrinth spillways.” USSD Conference, U.S. Society on Dams, San Diego, pp. 1645–1666.

    Google Scholar 

  • Price, K., Storn, R. M., and Lampinen, J. A. (2006). Differential evolution: A practical approach to global optimization, Springer.

    Google Scholar 

  • Ribeiro, M., Boillat, J., Schleiss, A., Laugier, F., and Albalat, C. (2007). “Rehabilitation of St-Marc dam. Experimental optimization of a piano key weir.” Proc. of the 32ndCongress of IAHR, Venice, Italy.

    Google Scholar 

  • Robertson, G. K. (2014). Labyrinth weir hydraulics: Validation of CFD modelling, MSc Thesis, Stellenbosch University.

    Google Scholar 

  • Savage, B. M. and Brenchley, S. (2013). “Fish passage using broadcrested labyrinth weirs for low-head dams.” International Journal of River Basin Management, Vol. 11, No. 3, pp. 277–286, DOI: 10.1080/15715124.2013.811417.

    Article  Google Scholar 

  • Seamons, T. R. (2014). Labyrinth weirs: A look into geometric variation and its effect on efficiency and design method predictions, MSc Thesis, Utah State University.

    Google Scholar 

  • Shahheydari, H., Jafari Nodoshan, E., Barati, R., and Azhdary Moghadam, M. (2014). “Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime.” KSCE Journal of Civil Engineering, DOI: 10.1007/s12205-013-0749-3.

    Google Scholar 

  • Sharma, R. K. and Sharma, T. K. (1992). Textbook of irrigation engineering Volume II: Dam Engineering (including Water Power Engineering), s.l.:Oxford and IBH Publishing Co. Pvt. Ltd.

    Google Scholar 

  • Storn, R. and Price, K. (1997). “Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces.” Journal of Global Optimization, Vol. 11, No. 4, pp. 341–359, DOI: 10.1023/A:1008202821328.

    Article  MathSciNet  Google Scholar 

  • Taylor, G. (1968). The performance of labyrinth weirs, PhD Thesis, University of Nottingham, U.K.

    Google Scholar 

  • Tullis, J. P., Amanian, N., and Waldron, D. (1995). “Design of labyrinth spillways.” Journal of Hydraulic Engineering, Vol. 121, No. 3, pp. 247–255, DOI: 10.1061/(ASCE)0733-9429(1995)121:3(247).

    Article  Google Scholar 

  • Vermeyen, T. (1991). Hydraulic model study of Ritschard dam spillways, Bureau of Reclamation, Denver.

    Google Scholar 

  • Wormleaton, P. R. and Tsang, C. C. (2000). “Aeration performance of rectangular planform labyrinth weirs.” Journal of Environmental Engineering, Vol. 126, No. 5, pp. 456–465, DOI: 10.1061/(ASCE)0733-9372(2000)126:5(456).

    Article  Google Scholar 

  • Zounemat-Kermani, M. and Teshnehlab, M. (2008). “Using adaptive neuro-fuzzy inference system for hydrological time series prediction.” Applied Soft Computing, Vol. 8, No. 2, pp. 928–936, DOI: 10.1016/j.asoc.2007.07.011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, K., Nodoushan, E.J., Barati, R. et al. Optimal design of labyrinth spillways using meta-heuristic algorithms. KSCE J Civ Eng 20, 468–477 (2016). https://doi.org/10.1007/s12205-015-0462-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0462-5

Keywords

Navigation