Skip to main content
Log in

Water effect on amine-modification of adsorbents for separation of CO2/N2

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The adsorption of CO2 can be enhanced through loading amines on adsorbents, therefore, the separation of CO2 from other gases is promoted. Water plays an important role in this process. Water increases both the adsorption amount of CO2 and the separation coefficient with N2 for all amines loaded. However, the effect of loading trialkylamines is not remarkable in the absence of water. The effect of loading dialkylamine does not depend on water, but the adsorbent cannot be regenerated at ambient temperature. In comparison, an adsorbent loading trialkylamine can be regenerated at ambient temperature even in the presence of water with fairly good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metz B, Davidson O, Bosch P et al. Mitigation of Climate Change[M]. Cambridge University Press, New York, 2007.

    Google Scholar 

  2. Metz B, Davidson O, Coninck H D et al. Carbon Dioxide Capture and Storage [M]. Cambridge University Press, New York, 2005.

    Google Scholar 

  3. IEA. Tracking Industrial Energy Efficiency and CO 2 Emissions[M]. OECD/IEA Publishing, Paris, 2007.

    Google Scholar 

  4. IEA. Key World Energy Statistics [M]. OECD/IEA Publishing, Paris, 2008.

    Google Scholar 

  5. Douglas A, Costas T. Separation of CO2 from flue gas: A review [J]. Separation Science and Technology, 2005, 40(1–3): 321–348.

    Google Scholar 

  6. Yang H, Xu Z, Fan M et al. Progress in carbon dioxide separation and capture: A review [J]. Journal of Environmental Science, 2008, 20(1): 14–27.

    Article  Google Scholar 

  7. Arenillas A, Smith K M, Drage T C et al. CO2 capture using some fly ash-derived carbon materials[J]. Fuel, 2005, 84(17): 2204–2210.

    Article  Google Scholar 

  8. Drage T C, Arenillas A, Smith K M et al. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins [J]. Fuel, 2007, 86(1/2): 22–31.

    Article  Google Scholar 

  9. Wang X P, Yu J J, Cheng J et al. High temperature adsorption of carbon dioxide on mixed oxides derived hydrotalcite-like compounds [J]. Environmental Science and Technology, 2008, 42(2): 614–618.

    Article  MathSciNet  Google Scholar 

  10. Zhang J, Webley P A, Xiao P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas [J]. Energy Conversion and Management, 2008, 49(2): 346–356.

    Article  Google Scholar 

  11. Guo B, Chang L P, Xie K C. Adsorption of carbon dioxide on activated carbon [J]. Journal of Natural Gas Chemistry, 2006, 15(3): 223–229.

    Article  Google Scholar 

  12. Li Y, Yang R T. Gas adsorption and storage in metalorganic framework MOF-177 [J]. Langmuir, 2007, 23(26): 12937–12944.

    Article  Google Scholar 

  13. Liu X W, Zhou L, Fu X et al. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4 [J]. Chemical Engineering Science, 2007, 62(4): 1101–1110.

    Article  Google Scholar 

  14. Xu X C, Song C S, Andersen J M et al. Preparation and characterization of novel CO2 ‘molecular basket’ adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 [J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 29–45.

    Article  Google Scholar 

  15. Yue M B, Sun L B, Cao Y et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine [J]. Chemistry — A European Journal, 2008, 14 (11): 3442–3451.

    Article  Google Scholar 

  16. Díaz E, Muñoz E, Vega A et al. Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: Effects of adsorption temperature and water treatment [J]. Industrial & Engineering Chemistry Research, 2008, 47(2): 412–418.

    Article  Google Scholar 

  17. Kim J H, Lee C H, Kim W S et al. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite [J]. Journal of Chemical & Engineering Data, 2003, 48(1): 137–141.

    Article  Google Scholar 

  18. Plaza M G, Pevida C, Arias B et al. Development of lowcost biomass-based adsorbents for postcombustion CO2 capture [J]. Fuel, 2009, 88(12): 2442–2447.

    Article  Google Scholar 

  19. Jadhav P D, Rayalu S S, Biniwale R B et al. CO2 emission and its mitigation by adsorption on zeolites and activated carbon [J]. Current Science, 2007, 92(6): 724–726.

    Google Scholar 

  20. Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources [J]. ChemSusChem, 2009, 2(9): 796–854.

    Article  Google Scholar 

  21. Siriwardane R V, Shen M, Fisher E P et al. Adsorption of CO2 on molecular sieves and activated carbon [J]. Energy Fuels, 2001, 15(2): 279–284.

    Article  Google Scholar 

  22. Zhang Z Z, Ruan H Z, Zhou Y P et al. A research note on the adsorption of CO2 and N2[J]. Chinese Journal of Chemical Engineering, 2011, 19(5): 733–737.

    Article  Google Scholar 

  23. Plaza M G, Pevida C, Arenillas A et al. CO2 capture by adsorption with nitrogen enriched carbons [J]. Fuel, 2007, 86(14): 2204–2212.

    Article  Google Scholar 

  24. Harlick P J E, Sayari A. Applications of pore-expanded mesoporous silicas(3): Triamine silane grafting for enhanced CO2 adsorption [J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3248–3255.

    Article  Google Scholar 

  25. Norihito H, Katsunori Y, Tatsuaki Y. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15 [J]. Microporous and Mesoporous Materials, 2005, 84(1–3): 357–365.

    Google Scholar 

  26. Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon di-oxide on aminosilane-modified mesoporous silica [J]. J Jpn Pet Inst, 2005, 48(1): 29–36.

    Article  Google Scholar 

  27. Harlick P J E, Sayari A. Applications of pore-expanded mesoporous silica(5): Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance [J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 446–458.

    Article  Google Scholar 

  28. Knowles G P, Graham J V, Delaney S W et al. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents [J]. Fuel Processing Technology, 2005, 86(14/15): 1435–1448.

    Article  Google Scholar 

  29. Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor [J]. Chemistry Letters, 2004, 33(5): 510–511.

    Article  Google Scholar 

  30. Leal O, Bolivar C, Ovalles C et al. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel [J]. Inorganica Chimica Acta, 1995, 240(1/2): 183–189.

    Article  Google Scholar 

  31. Brunauer S, Emmett P H, Tellerm E J. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society, 1938, 60(2): 309–319.

    Article  Google Scholar 

  32. Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances (I): Computations from nitrogen isotherms [J]. Journal of the American Chemical Society, 1951, 73(1): 373–380.

    Article  Google Scholar 

  33. Xue Q M, Wu D, Zhou Y P et al. Improvement of aminemodification with piperazine for the adsorption of CO2[J]. Applied Surface Science, 2012, 258(8): 3859–3863.

    Article  Google Scholar 

  34. Zhou L, Wu J Q, Li M et al. Prediction of multicomponent adsorption equilibrium of gas mixtures including supercritical components [J]. Chemical Engineering Science, 2005, 60(11): 2833–2844.

    Article  Google Scholar 

  35. Ruthven D M Principles of Adsorption and Adsorption Process[M]. Wiley, New York, 1984.

    Google Scholar 

  36. Yang R T. Gas Separation by Adsorption Process[M]. Butter Worths, Boston, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzheng Zhang  (张中正).

Additional information

Supported by National Natural Science Foundation of China (No. 20876114).

Zhang Zhongzheng, born in 1983, male, Dr, assistant engineer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Tang, J., Sun, Y. et al. Water effect on amine-modification of adsorbents for separation of CO2/N2 . Trans. Tianjin Univ. 19, 313–318 (2013). https://doi.org/10.1007/s12209-013-2002-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-013-2002-z

Keywords

Navigation