Skip to main content
Log in

Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

We investigated the effects of ultrasound treatment on cellulase adsorption and lignocellulose hydrolysis. The activity of cellulase remained constant upon low-power ultrasound treatment (<120 W) and decreased using high-power ultrasound (>280 W). Oscillating cellulase adsorption occurred upon ultrasound treatment with any intensity. The maxima for desorption and adsorption were 41.9 and 83.1%, respectively, during 1 h of 90 W ultrasound treatment at 50 °C. A comparison between the short-time with long-time ultrasound experiments indicated that ultrasound treatment tended to desorb cellulase from substrate. However, ultrasound treatment also led to further surface erosion of biomass, which increased cellulase accessibility. These joint actions of ultrasound treatment induced the oscillating adsorption of cellulase. The increase in cellulase accessibility caused by ultrasound treatment led to a significant enhancement in lignocellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Du RY, Huang RL, Su RX et al (2013) Enzymatic hydrolysis of lignocellulose: SEC-MALLS analysis and reaction mechanism. RSC Adv 3(6):1871–1877

    Article  Google Scholar 

  2. Niu H, Shah N, Kontoravdi C (2015) Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation. Biochem Eng J 105(Pt B):455–472

    Google Scholar 

  3. Kobayashi K, Kimura S, Kim UJ (2012) Enzymatic hydrolysis of cellulose hydrates. Cellulose 19(3):967–974

    Article  Google Scholar 

  4. Tu M, Pan X, Saddler JN (2009) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57(17):7771–7778

    Article  Google Scholar 

  5. Tjerneld F, Persson I, Albertsson PA (1985) Enzymatic hydrolysis of cellulose in aqueous two-phase systems. I. Partition of cellulases from Trichoderma reesei. Biotechnol Bioeng 27(7):1036–1043

    Article  Google Scholar 

  6. Rodrigues AC, Haven MO, Lindedam J (2015) Celluclast and Cellic ®; CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Technol 79:70–77

    Article  Google Scholar 

  7. Zhu ZG, Sathitsuksanoh N, Zhang YHP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134(11):2267–2272

    Article  Google Scholar 

  8. Du RY, Su RX, Li X et al (2012) Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose 19(2):371–380

    Article  Google Scholar 

  9. Xue YW, Ji M (2007) Optimization of frequency on ultrasonic disintegration of waste activated sludge. J Tianjin Univ 40(6):747–751 (in Chinese)

    Google Scholar 

  10. Khanal SK, Montalbo M, Leeuwen JV (2007) Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnol Bioeng 98(5):978–985

    Article  Google Scholar 

  11. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  Google Scholar 

  12. Khanal SK, Grewell D, Sung S et al (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37(4):277–313

    Article  Google Scholar 

  13. Nakashima K, Ebi Y, Kubo M et al (2015) Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover. Ultrason Sonochem 29:455–460

    Article  Google Scholar 

  14. Zhang YQ, Fu EH, Liang JH (2008) Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chem Eng Technol 31(10):1510–1515

    Article  Google Scholar 

  15. Subhedar PB, Gogate PR (2015) Ultrasound-assisted bioethanol production from waste newspaper. Ultrason Sonochem 27:37–45

    Article  Google Scholar 

  16. Yachmenev V, Condon B, Klasson T et al (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bioenergy 3(1):25–31

    Article  Google Scholar 

  17. Lunelli FC, Sfalcin P, Souza M et al (2014) Ultrasound-assisted enzymatic hydrolysis of sugarcane bagasse for the production of fermentable sugars. Biosyst Eng 124:24–28

    Article  Google Scholar 

  18. Zhang M, Su RX, Qi W et al (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotechnol 160(5):1407–1414

    Article  Google Scholar 

  19. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  21. Goodman LP, Dugan LR (1970) The effect of sonication on lipase activity. Lipids 5(3):362–365

    Article  Google Scholar 

  22. Wang ZB, Lin XM, Li PP et al (2012) Effects of low intensity ultrasound on cellulase pretreatment. Bioresour Technol 117(10):222–227

    Article  Google Scholar 

  23. Ercan SS, Soysal C (2011) Effect of ultrasound and temperature on tomato peroxidase. Ultrason Sonochem 18(2):689–695

    Article  Google Scholar 

  24. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27(5):298–306

    Article  Google Scholar 

  25. Kwiatkowska B, Bennett J, Akunna J et al (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv 29(6):768–780

    Article  Google Scholar 

  26. Gadhe JB, Gupta RB, Elder T (2006) Surface modification of lignocellulosic fibers using high-frequency ultrasound. Cellulose 13(1):9–22

    Article  Google Scholar 

  27. Chundawat SPS, Donohoe BS, Sousa LD et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4(3):973–984

    Article  Google Scholar 

  28. Hoeger IC, Nair SS, Ragauskas AJ et al (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818

    Article  Google Scholar 

  29. Bansal P, Hall M, Realff MJ et al (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833–848

    Article  Google Scholar 

  30. Lin SXQ, Chen XD (2007) A laboratory Investigation of milk fouling under the influence of ultrasound. Food Bioprod Process 85(1):57–62

    Article  Google Scholar 

  31. Zhang YQ, Fu EH, Liang JH (2008) Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chem Eng Technol 31(10):1510–1515

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the Natural Science Foundation of China (No. 51473115 and No. 21276192) and the Research Project of Chongqing Education Commission (No. KJ1500632).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongxin Su or Ruoyu Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Yang, R., Jifeng, Y. et al. Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment. Trans. Tianjin Univ. 23, 11–19 (2017). https://doi.org/10.1007/s12209-016-0019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-0019-9

Keywords

Navigation